xPC Target™ 4
|/O Reference

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
xPC Target™ I/0 Reference
© COPYRIGHT 2000-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

November 2000
June 2001
September 2001
July 2002
September 2002
September 2003
June 2004
August 2004
October 2004
November 2004
March 2005
September 2005
March 2006
May 2006
September 2006
March 2007
September 2007
March 2008
October 2008

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 1.1 (Release 12)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)
Revised for Version 2.0.1 (Release 13)
Revised for Version 2.0.1 (Release 13SPI)
Revised for Version 2.5 (Release 14)
Revised for Version 2.6 (Release 14+)
Revised for Version 2.6.1 (Release 14SP1)
Revised for Version 2.7 (Release 14SP1+)
Revised for Version 2.7.2 (Release 14S5P2)
Revised for Version 2.8 (Release 14SP3)
Revised for Version 2.9 (Release 2006a)
Revised for Version 3.0 (Release 2006a+)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 4.0 (Release 2008b)

xPC Target I/0 Library

I/ODriver Blocks 1-2
Introduction 1-2
Third-Party Driver Blocks 1-2
I/O Driver Block Library, 1-3
Memory-Mapped Devicesccciiiiiinn... 1-7
ISABusT/ODevices ..., 1-7
PCIBusI/ODevices, 1-7
xPC Target I/O Driver Structures 1-8
PWM and FM Driver Block Notes 1-10
Driver Block Documentation 1-11

Adding I/0O Blocks with the xPC Target Library 1-13

Adding I/0 Blocks with the Simulink Library
Browser e 1-18

Defining I/0 Block Parameters 1-23

Serial Communications Support

2

Serial Driverst 2-2
Introduction 2-2
Hardware Connections for RS-232 2-4
Host and Target PC Communication 2-4

xPC Target RS-232 and 422/485 Drivers (Composite) .. 2-6
Introduction i 2-6
Adding RS-232 Blocks 2-7

vi

Building and Running the Target Application

(Composite) .o v vttt e 2-13
RS-232/422/485 Simulink Block Reference 2-14
Boards and Blocks — Alphabetical List 2-22

Serial Communications Obsolete Drivers

Support

Obsolete Driverscoiiiiineiinninnnnnn.. 3-2
Introduction 3-2
xPC Target RS-232 Drivers (Obsolete) 3-2
Boards and Blocks — Alphabetical List 3-36

GPIB I/O Support

GPIB Driversuiiiiiiiiiiiii i, 4-2
Introduction 4-2
Hardware Connections for GPIB 4-2
Simulink Blocks for GPIB 4-3
MATLAB Message Structures for GPIB 4-3

Using GPIB Drivers0 00ttt 4-5
Introduction 4-5
Adding GPIB Driver Blocks 4-5
Creating GPIB Message Structures 4-10

GPIB MATLAB Structure Reference 4-13
Introduction 4-13
GPIB Initialization and Termination Message

StrUCEULES ..ottt e 4-13
GPIB Send/Receive Message Structure 4-14

Contents

Shortcuts and Features for Messages 4-17
Supported Data Types for Message Fields 4-19

Boards and Blocks — Alphabetical List 4-20

CAN 1/O Support

5

Introduction, 5-2
xPC Target CAN Libraryccoiuiiiieennn. 5-2
CAN-AC2 . 5-4
CAN-AC2-PCI i e e 5-4
CAN-AC2-104 ... e e 5-5

Model Execution Driven by CAN Messages (Interrupt

Capability of CAN Receive Blocks) 5-6
Summary of Model Execution Driven by CAN Messages .. 5-6
CAN-AC2 (ISA) .ottt e e e e e e e 5-6
CAN-AC2-PCI ... i e e e e 5-7
CAN-AC2-104 (PC/104) ..o v i it e e 5-8

Defining Initialization and Termination CAN

MeSSageS ... e 5-10
Introducing Initialization and Termination CAN
Messagest e 5-10
Example 5-11
CAN-AC2 and CANopen Devices 5-13
Constructing and Extracting CAN Data Frames 5-14
Detecting Time-Outs When Receiving CAN Messages .. 5-15

CAN Blocks for the CAN-AC2 (ISA) with Philips PCA
82C200 CAN Controllercc... 5-16

vii

viii

CAN Blocks for the CAN-AC2 (ISA) with Intel 82527
CAN Controller i, 5-27

CAN Blocks for the CAN-AC2-PCI with Philips SJA1000
CAN Controller i, 5-38

CAN Blocks for the CAN-AC2-104 (PC/104) with Philips
SJA1000 CAN Controller 5-51

CAN 1/0 Support for FIFO

6

Introduction i . 6-2
Summary of FIFOModeo uu... 6-2
FIFO Mode Drivers for CAN Boards from Softing 6-3

FIFO CAN Demonstrations 6-7
xPC Target FIFO CAN Demonstrations for CAN-AC2-PCI

and CAN-AC2-104 Boardsccvviivvnnn... 6-7

Acceptance Filters, 6-9
Using Acceptance Filters 6-9
Acceptance Filter Example 6-10

Accessing CANdb DBC Format Databases from the xPC
Target Environment 6-11

CAN FIFO Blocks for the CAN-AC2-PCI with Philips
SJA1000 CAN Controller 6-14

CAN FIFO Blocks for the CAN-AC2-104 with Philips
SJA1000 CAN Controller 6-41

Contents

Model-Based Ethernet Communications

Support

Model-Based Ethernet Communications 7-2
What Is Model-Based Ethernet Communications? 7-2
PCIBusand Slot Numberscu... 7-2
MAC Addresses . .vvvvinee it 7-3
Network Buffer Pointers, 7-4
Filter Type and Filter Address Blocks 7-4
xPC Target Ethernet Block Library 7-4

xPC Target Demonstrations for Model-Based Ethernet
Communicationsc0 i, 7-6

Blocks — Alphabetical List 7-7

Network Buffer Library for Model-Based
Ethernet Communications Support

8|

Network Buffer Blocks 8-2

Blocks — Alphabetical List 8-3

UDP 1/0 Support

2

User Datagram Protocol (UDP) 9-2
What IsUDP? e e 9-2
Why UDP? ... e e 9-4
Note on UDP Communication 9-4

xPC Target UDP Example 9-5

ix

X

Contents

UDP Communication Setup 9-12

Boards and Blocks — Alphabetical List 9-14

ARINC 429 Support

10|

Boards and Blocks — Alphabetical List 10-2

MIL-STD-1553 Support

Introduction 11-2
Before You Start i 11-2
Remote Terminal Operation 11-5
Bus Controller Operationcooiuueeneeennn.. 11-7
Remote Terminal and Bus Controller Operation 11-9
Bus Monitor Operationccoiiiueeneeeenn.. 11-11

Boards and Blocks — Alphabetical List 11-13

Parallel Ports

12

Using Parallel Ports 12-2
Introduction i 12-2
Using the Parallel Port as an Interrupt Source 12-3
Using Add-On Parallel Port Boards 12-4

Boards and Blocks — Alphabetical List 12-6

SAE J1939

13

14

15

16

17

SAE J1939Blocks 13-2
Blocks — Alphabetical List 13-3
Access

Boardsand Blocks o .. 14-2
ADDI-DATA

Boards and Blocks — Alphabetical List 15-2
Adlink

Boards and Blocks — Alphabetical List 16-2
Advantech

Boards and Blocks — Alphabetical List 17-3

xi

xii

18

Boards and Blocks — Alphabetical List 18-2

BittWare

Running Models with BittWare Blocks 19-2

Introduction i i 19-2

Model Notes ...t e e e e 19-2
Frame Size, Sample Rate, and Sample Time Parameter

Notes ... e 19-4

Boards and Blocks — Alphabetical List 19-6

BVM

Boardsand Blocks, 20-2

Contents

Commtech

21

Condor Engineering

22

Contec

23

Boards and Blocks — Alphabetical List 23-3

Data Translation

24

Boards and Blocks — Alphabetical List 24-4
Diamond
Boards and Blocks — Alphabetical List 25-3

General Standards

26

Overview of PMC-ADADIO Functionality 26-2
Introduction to PMC-ADADIO 26-2
A/D BlocKkSs .ot e 26-3
Create Enable Signal Blocks 26-6

xiii

xiv

D/IA BIoCKS .o i e 26-8

27

28

Interleaving Analog Input and Analog Output Blocks 26-10
Using Multiple Boards for Simultaneous Analog to Digital

CONVETrSION &t vttt ettt et ettt et ieeens 26-12

Overview of Audio Applications 26-15

Boards and Blocks — Alphabetical List 26-16

Humusoft

Boardsand Blocks 27-2

Keithley

Boards and Blocks — Alphabetical List 28-2

The MathWorks

29

Contents

xPC TargetBox I/O Options 29-2

Blocks — Alphabetical List 29-3

Measurement Computing (Formerly Computer

Boards)

30
Boards and Blocks — Alphabetical List 30-6
MPL

31
Boardsand Blocks oo 31-2

National Instruments

32

Boards and Blocks — Alphabetical List 32-6

North Atlantic Industries, Inc. (Formerly Apex)

33

Boards and Blocks — Alphabetical List 33-3
Quanser
Boards and Blocks — Alphabetical list 34-2

. 4%

xvi

Quatech

35

Real Time Devices

36

Boards and Blocks — Alphabetical List 36-3

SBS Technologies

37

38|

Contents

Broadcast Memory 37-3
Introduction i i 37-3
Create Shared Memory Partitions 37-3
Initialize Shared Memory Nodes 37-5

SBS Shared Memory Structure Reference 37-8
Shared Memory Partition Structure 37-8
Shared Memory Node Initialization Structure 37-10

Boards and Blocks — Alphabetical List 37-15

Sensoray

Boards and Blocks — Alphabetical List 38-2

Softing

39

140

Systran

Before You Start i, 40-2
Create Shared Memory Partitions 40-2
Initialize Shared Memory Nodes 40-4
Systran Shared Memory Structure Reference 40-6
Shared Memory Partition Structure 40-6
Shared Memory Node Initialization Structure 40-11
Boards and Blocks — Alphabetical List 40-17

Texas Instruments

41

Boardsand Blocks 41-2

United Electronic Industries (UEI)

12

Groupingthe UEI Boards 42-5
Introduction i 42-5
Changing the Board Associated with the Block 42-6
Getting Information on a Specific Board 42-6

Analog Input Frame Driver Blocks 42-7
Introduction 42-7
Notes on Master and Slave Boards 42-7

xXvii

xviii

Interrupt Numbers 42-8

IRQ Source Block, 42-10
Example Models i, 42-11
Boards and Blocks — Alphabetical List 42-13

Vector CANape Support

43|

Vector CANapeottt 43-2
Introduction 43-2
xPC Target and Vector CANape Limitations 43-3

Configuring the xPC Target and Vector CANape

Software i 43-4
Setting Up and Building the Model 43-4
Creating a New Vector CANape Project to Associate with a
Particular Target Application 43-6
Configuring the Vector CANape Device 43-7
Providing A2L (ASAP2) Files for the Vector CANape
Database 43-10
Event Mode Data Acquisition 43-11
Guidelines ...ttt e e e 43-11
Limitationsuitiiiniiiiii i 43-11
Versalogic
Boardsand Blocks 44-2

Contents

GE Fanuc (Formerly VMIC)

45

Before You Startc0i i, 45-2
Create Shared Memory Partitions 45-2
Initialize Shared Memory Nodes 45-4

GE Fanuc Embedded Systems Shared Memory

Structure Reference 45-6
Shared Memory Partition Structure 45-6
Shared Memory Node Initialization Structure 45-8
Boards and Blocks — Alphabetical List 45-14

Miscellaneous Blocks

16

Asynchronous Event Support 46-2
Adding an Asynchronous Event 46-2
Asynchronous Interrupt Examples 46-5

Blocks — Alphabetical List 46-6

17 |

Blocks — Alphabetical List 47-2

Obsolete Drivers

48|

xPC Target Library of Obsolete Drivers 48-2

xix

XX

Contents

Blocks — Alphabetical List 48-3

Serial Communications Support with Internal

Drivers
RS-232/422/485 Internal Blocks and Subsystems A-2
Blocks — Alphabetical List A-3

xPC Target I/0O Library

¢ “TI/O Driver Blocks” on page 1-2

¢ “Adding I/O Blocks with the xPC Target Library” on page 1-13

¢ “Adding I/O Blocks with the Simulink Library Browser” on page 1-18
¢ “Defining I/O Block Parameters” on page 1-23

1 xpc Target™ 1/QO Library

1/0O Driver Blocks

In this section...

“Introduction” on page 1-2

“Third-Party Driver Blocks” on page 1-2

“I/O Driver Block Library” on page 1-3
“Memory-Mapped Devices” on page 1-7

“ISA Bus I/0O Devices” on page 1-7

“PCI Bus I/0 Devices” on page 1-7

“xPC Target I/O Driver Structures” on page 1-8
“PWM and FM Driver Block Notes” on page 1-10

“Driver Block Documentation” on page 1-11

Introduction

The xPC Target™ environment is a solution for prototyping, testing, and
deploying real-time systems using standard PC hardware. In support of this,
the software allows you to add I/0 blocks to your model. The blocks of the xPC
Target library provides a particular function of an I/0 board. By using I/0
blocks in your model, you can generate executable code tuned specifically for
your hardware.

You add I/O driver blocks to your Simulink® model to connect your model
to physical I/O boards. These I/O boards then connect to the sensors and
actuators in the physical system.

Third-Party Driver Blocks

In addition to the blocks contained in the xPC Target library, you can also
use third-party driver blocks in your xPC Target model. The description of
these blocks is beyond the scope of the xPC Target documentation. See the
provider of the third-party driver blocks for information on those boards and
driver blocks.

1-2

|/O Driver Blocks

1/0O Driver Block Library

A driver block does not represent an entire board, but an I/O section supported
by a board. Therefore, the xPC Target library can have more than one block
for each physical board. I/0 driver blocks are written as C-code S-functions
(noninlined S-functions). The source code for the C-code S-functions is
included with the xPC Target software.

Note, if your model contains I/O blocks, take hardware latency values into
account for the model sample time. Use the xPC Target Interactive Guide tool
to find latency values for the supported boards:

http://www.mathworks.com/support/product/XP/productnews/ -
interactive_guide/xPC_Target_Interactive_Guide.html

The xPC Target system supports PCI and ISA buses. If the bus type is not
indicated in the driver block number, you can determine the bus type of a
driver block by checking the block’s parameter dialog box. The last parameter
is either a PCI slot, for PCI boards, or a base address, for ISA boards.

You can open the I/O device driver library with the MATLAB® command
xpclib. The library xpclib contains sublibraries grouped by the type of I/0
function they provide.

Note Opening a dialog box for a source block causes the Simulink software to
pause. While the Simulink software is paused, you can edit the parameter
values. You must close the dialog box to have the changes take effect and
allow the Simulink software to continue. In particular, hardware input
blocks in the xPC Target library (blocks that acquire data from hardware)
are affected by this change.

http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html
http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html

1 xpc Target™ 1/QO Library

E!Lihrary:upclih =] E3
File Edit Wew Format Help
F
#PC Target Block Library
A0 AD [ERE Crigital Crigital Counter Watchdeg Incremental LWDT Synchro ARINC-428 MIL-STD Ethernet
Frame Input Output Encoder Resolwer 1653
REZ32 GRIB Audio CAN LEL Thermo Signal Shared IP Carrier Mizc. Asynchronous UDF Utilities
couple Conditioning Memony Event
®PC Target “arsion <0 Help far
Driver Demos Copyright 1996-2008 The Mathilftods #PC Target

This window also contains the following blocks:

¢ xPC Target Driver Demos — When you double-click this block, the Demos
tab in the MATLAB Help Navigator opens, displaying the xPC Target
demos and demo groups.

¢ Help for xPC Target — When you double-click this block, the xPC Target
roadmap page is displayed. You can access the xPC Target documentation
with this block.

Note The xPC Target documentation describes only the xPC Target blocks.
It does not describe the actual board. Refer to the board manufacturer
documentation for information about the boards.

1-4

|/O Driver Blocks

When you double-click one of I/O block groups, the sublibrary opens,
displaying a list grouped by manufacturer as shown below.

E!Lihrary: xpclib/A /D

File Edit Wiew Format

Help

=101 x|

hiletmbyte Instruments

Dewices Technobgies

Advantech Ansbogic Measuement Contec Ciata Diarond Geneml Humusoft
Zomputing Trnslation Standamds
Faaithlzy Mational Cuanser Real Time S5BS Sensomy UEI Versabgic

Double-clicking one of the manufacturer groups then displays the set of I/O
device driver blocks for the specified I/O functionality (for example, A/D, D/A,
Digital Inputs, Digital Outputs, and so on).

1-5

xPC Target™ 1/O Library

The following figure shows the A/D drivers for the manufacturer Measurement
Computing, Inc.

brary: spcmeasurementcomputingli

=101 x|

File Edit Wiew Format Help

1-6

Cl0-DASAEMR
ComputerBoards 1
Analog Input

ClO-DAS1E01M2
ComputerBoards 1
Analog Input

CI0-DASAGOZM2
ComputerBoards 1
Analog Input

ClO-CoAa S 160330
ComputerBoards 1
Analog Input

Cl0-DAS1EIr EXP
ComputerBoards
Analog Input

ClO-DAS1E JR

CI0-LASAE01 12

Cl0-DASAGIRME
ComputerBoards 1
Analog Input

Cl0-DAS1602ME
ComputerBoards 1
Analog Input

CIO-DASIEIR 16

CIO-DASIE0Z 16

FCA04-DAS1GIRMZ PC104-DAS1EIRMEG
ComputerBoards 1 ComputerBeards 1
Analog Input Analog Input

PCA04-DASIEIR 12

PCADS4-DASIEJIR 16

CIO-DASIG0Z 12

CIO-DASIG 330

FCI-DAS1200/R PCI-DAS1 200 PCI-DoASG02M2 PCI-DAS1G0ZME
ComputerBoards 1 ComputerBoards 1 ComputerBoards 4 ComputerBoards 1
Analog Input Analog Input Analog Input Analog Input
PCI-DASA200 JR FCI-DAS1200 PCI-DASAG0Z 12 PCI-DASAGOZ 16
FCIM-DAS1E02MEG PCIDAS002
Measurement
ComputerBoards 1 .
Analog Input Computing
Analog Input

PCIM-DASAE0Z 16

PCl-DASI00Z AD

CIO-DASIGIR EXP

When you double-click one of these blocks, a Block Parameters dialog box
opens, allowing you to enter hardware-specific parameters. Parameters

typically include

® Sample time

Number of channels

Voltage range

PCI slot (PCI boards)
Base address (ISA boards)

|/O Driver Blocks

Memory-Mapped Devices

Some supported boards in the xPC Target I/O library are memory-mapped
devices, for example, Burr-Brown boards. These memory-mapped boards
are accessed in the address space between 640 K and 1 MB in the lower
memory area. The xPC Target software reserves a 112 KB memory space for
memory-mapped devices in the address range

C0000 - DBFFF

Some drivers for memory-mapped devices allow you to select an address
range supported by the device, but not supported by the xPC Target software.
For example, the CAN drivers for Softing allow you to select memory ranges
above DBFFF. Base addresses of memory-mapped devices must be chosen
within this memory space for your target application to work properly. Select
a memory range supported by both the device and the xPC Target software.

ISA Bus 1/0 Devices

There are two types of ISA boards:

e Jumper addressable ISA cards
¢ PnP (Plug and Play) ISA cards

The xPC Target software only supports jumper addressable ISA cards
(non-PnP ISA boards) where you have to set the base address manually.

PCI Bus 1/0 Devices

The xPC Target I/O library supports I/0O boards with a PCI bus. During the
boot process, the BIOS creates a conflict-free configuration of base addresses
and interrupt lines for all PCI devices in the target system. The user does not
need to define any base address information in the dialog boxes of the drivers.

All PCI device driver blocks have an additional entry in their dialog boxes.
This entry is called PCI Slot (-1 Autodetect) and allows you to use several
identical PCI boards within one target system. This entry uses a default
value of -1, which allows the driver to search the entire PCI bus to find the
board. If you specify a single number, X, greater than 0, the driver uses the
board in bus 0, slot X. When more than one board of the same type is found,

1 xpc Target™ 1/QO Library

1-8

you must use a designated slot number and avoid the use of autodetection.
For manually setting the slot number you use a number greater than or equal
to 0. If the board is not able to locate this slot in the target PC, your target
application will generate an error message after downloading.

If this additional entry is set to any value equal to or greater than 0, you must
be aware of the manufacturer’s identification number (Vendor ID) and the
board identification number (Device ID) of those boards supported by the I/0
library. When the target is booted, the BIOS is executed and the target PC
monitor shows parameters for any PCI boards installed on the target PC.

An example is shown below:

Bus No Device Func. Vendor Device Device IRQ
No. No. ID ID Class

0 4 1 8086 7111 IDE 14/15
controller

0 4 2 8086 7112 Serial bus 10
controller

0 11 0 1307 000B Unknown N/A
PCI device

1 0 0 12D2 0018 Display 11
controller

In this example, the third line indicates the location of the Measurement
Computing™ PCI-DIO48 board. This is known since the Measurement
Computing vendor ID is 0x1307 and the device ID is Oxb. In this case, you
now can see that the Measurement Computing board is plugged into PCI slot
11 (Device No.), and that this value must be entered in the dialog box entry in
your I/O device driver for each model that uses this I/O device.

xPC Target 1/O Driver Structures

Properties for xPC Target I/O drivers are usually defined using the parameter
dialog box associated with each Simulink block. However, for more advanced
drivers, the available fields defined by text boxes, check boxes, and pull-down
lists are inadequate to define the behavior of the driver. In such cases, a
more textual description is needed to indicate what the driver has to do at

|/O Driver Blocks

runtime. Textual in this context refers to a programming-language-like
syntax and style.

The xPC Target software currently uses a string description contained in
message structures for the conventional RS-232, GPIB, CAN (initialization),
and the general counter drivers (AMD9513).

What is a message structure? — A message structure is a MATLAB array
with each cell containing one complete message (command). A message
consists of one or more statements.

First Message Second Message Third Message

Message(1).field Message(2) .field Message(3).field
Message(1).field Message(2) .field Message(3).field
Message(1).field Message(2) .field Message(3).field

Syntax of a message statement — Each statement in a message has the
following format:

Structure_name(index).field_name = <field string or value>

The field names are defined by the driver, and need to be entered with the
correct upper- and lowercase letters. However, you can choose your own
structure name and enter that name into the driver parameter dialog box.

Creating a message structure — You could enter the message structure
directly in the edit field of the driver parameter dialog box. But because the
message structure is an array and very large, this becomes cumbersome
very easily.

A better way is to define the message structure as an array in an M-file and
pass the structure array to the driver by referencing it by name. For example,
to initialize an external A/D module and acquire a value during each sample
interval, create an M-file with the following statements:

Message (1) .senddata="'InitADConv, Channel S%d'
Message (1) .inputports=[1]
Message(1).recdata=""
Message (1) .outputports=[]

1-9

1 xpc Target™ 1/QO Library

1-10

Message(2) .senddata='Wait and Read converted Value'
Message(2) .inputports=J[]

Message(2) .recdata="'%f"

Message (2) .outputports=[1]

This approach is different from other xPC Target driver blocks:
¢ The M-file containing the definition of the message structure has to be

executed before the model is opened.

After creating your Simulink model and message M-file, set the preload
function of the Simulink model to load the M-file the next time you open
the model. In the MATLAB window, type

set_param(gcs, 'PreLoadFcn', 'M-file_name')

® When you move or copy the model file to a new directory, you also need to
move or copy the M-file defining the message structure.

During each sample interval, the driver block locates the structure defined
in the Block Parameters dialog box, interprets the series of messages, and
executes the command defined by each message.

Specific drivers and structures — For detailed information on the fields in
a message structure, see the following chapters in this document:

¢ Chapter 2, “Serial Communications Support”

¢ Chapter 4, “GPIB I/O Support”
¢ Chapter 5, “CAN I/O Support”

PWM and FM Driver Block Notes

In PWM and FM driver blocks, your control over the output frequency and
duty cycle is not always precise. In particular, these values are affected by
the way that the base frequency is selected, as described in this section. The
base frequency value is exact.

At the beginning of each sample time, two unsigned 16-bit integers, n and m,
are computed based on the block parameters and the current values of the

|/O Driver Blocks

input signals. During the current sample period, the output signal is held
high for m cycles of the base frequency, low for the next n-m cycles, high for the
next m cycles, and so forth.

R
PP

For a base frequency b, this results in a rectangular output signal of frequency
b/n and duty cycle m/n. Because m and n must be integers, it is not possible
to provide a continuous range of output frequencies and duty cycles with
perfect exactness.

For example, assume that you want to configure an FM block with a duty
cycle (m/n) of 1/2. The input signal f to this block is a relative frequency. It
specifies an output frequency of b x f. Because m and n must be integers, it is
not always possible to find values of m and n such that f will equal b/n exactly
and n will equal 2 x m (duty cycle m/n = 1/2) exactly. Such an exact match is
only possible when the input signal f equals 1/4, 1/6, 1/8, and so forth. The
output frequencies for the intervening input signal f values are approximate.
The errors are smaller as f approaches 0 and larger as f approaches 1.

Hint, to achieve the smallest margin of error, select the largest possible base
frequency. The fact that n and m must be 16-bit integers imposes a lower limit
of b / (2% - 1) on the frequencies that can be generated using a given
base frequency.

Driver Block Documentation

The typical xPC Target block documentation briefly describes the supported
board, then describes the parameters for each of the blocks that support the
board. Included in the documentation for each board is a board characteristics
table. Board characteristics tables can include the following information:

1-11

1 xpc Target™ 1/QO Library

Characteristic Specifies...

Board name Name of the board supported by the blocks. For
example, National Instruments® PCI-6221.

Manufacturer Manufacturer of the board. For example, National
Instruments.

Bus type Bus that is used by the board. For example, PCI or ISA.

Access method Whether the board is memory mapped or I/O mapped.

Multiple block If you can use multiple blocks for the same function
instance support | on the same board. For example, different blocks for
different channels of an A/D device.

Multiple board If you can use multiple boards of the same type in one
support target application.

1-12

Adding 1/O Blocks with the xPC Target™ Library

Adding 1/0 Blocks with the xPC Target Library

The xPC Target product includes a Simulink block library for I/O drivers. The
highest hierarchical level in the library is grouped by I/O function. The second
level is grouped by board manufacturer. The manufacturer groups within this
second level contain the driver blocks for specific boards.

E!Lihrary:upclih

This procedure uses the Simulink model xpc_osc.mdl as an example of how
to add and connect I/O blocks:

1 In the MATLAB window, type

xpclib

The Library: xpclib window opens.

File Edit Wiew Format Help

S[=] E3

¥PC Target Block Likirary

Al AT Cri [rigital [rigital Counter Watchdog Incremental LWDT Synchro ARING-428 MIL-STD Ethernet
Frame Input Output Encodar Fazalwar 15832
REZ32 GRIB Audin CAN LED Thermo Signal Shared IP Carrier Mizz. Asynchronous UDP Utilitie=
couple Conditioning Memons Event
#*PC Target Wersion .0 Help for
Driver Demos Copyright 1996-2008 The Math\Wars =PC Target

Alternatively, you can access the I/0O driver library with the Simulink
Library Browser.

1-13

1 xpc Target™ 1/QO Library

2 Open a function group. For example, to open the A/D group, double-click
the A/D block.

The manufacturer level opens.

E! Library: xpclib/a,/D I [=] S

File Edit Wew Format Help

o o [[B B B

Adwantech Anabgic Measuement Contec Dtz Diarmond Geneml Humusoft
Somputing TrRnslation Standamds

o P [B B [[[

keithley Mational Quanser Real Time SBS Sensomy UEI Versakbgic
etmbyte Instruments Devizes Technolkbgies

Within each manufacturer group are the blocks for a single function.

3 Open a manufacturer group. For example, to open the A/D driver
blocks from Measurement Computing, double-click the group marked
Measurement Computing.

1-14

Adding 1/O Blocks with the xPC Target™ Library

The window with the A/D driver blocks for Measurement Computing opens.

=10l]

"] Library: xpcmeasurementcomputingli
File Edit ‘iew Format Help

CIO-DAS16MR

CIO-DAS1E01M2

CIO-DAS1602M2

CIO-DAS 16230

CIO-DAS 16T EXP

ComputerBoards 1 ComputerBoards 1 ComputerBoards 1 ComputarBoards 1 ComputerBaoards
Analog Input Analog Input Analog Input Analog Input Analog Input
CI0-DASIE JR Cl0-DASIE01 12 ClI0-DASIE02Z 12 Cl0-DASIE 230 CIO-DASIGJR EXP

CIO-DAS1GIRME
ComputerBoards 1
Analog Input

CIO-DAS1602M6
ComputerBoards 1
Analog Input

CIO-DASMGIR 16

CIO-DASMG0Z 16

PCAOG-DASIEIRMEZ
ComputerBoards 1
Analag Input

PCAOS-DASIEIRMEG
ComputerBoards 1
Analag Input

FCA04-DAS1GIR 12

FCA04-DAS1GIR 16

PCI-DAS120000R PCI-DASH200 PCI-DASIG02M2 PCI-DASHE0206
ComputerBoards 1 ComputerBoards 1 ComputerBoards 1 ComputerBoards 1
Analag Input Analag Input Analag Input Analog Input
FCI-DAS1200 JR FCI-DAS1200 FCI-DAS1602 12 FCI-DAS1E02 16
FCIM-DAS1602MG FCL-DASIO0Z
teazurement
ComputerBoards 1 .
Analog Input Computing
ainp Analog Input

FCIM-DASI60Z 16

FCI-DAS1002 AD

Xpc_osc

4 In the Simulink window, type

The Simulink block diagram opens for the model xpc_osc.mdl.

1-15

1 xpc Target™ 1/QO Library

Dhocose _ioix

File Edit Wiew Simulation Format Tools Help

nooo 100072
ee 2 +400+100042 |—|
54+ 5+
- -
Sinnal Transfer Fen
Generatar

Scopel

xPiG Tamget tutorizl model

5 From the block library, click and drag the name of an A/D board to the
Simulink block diagram. Likewise, click and drag the name of a D/A board
to your model.

The Simulink software adds the new I/O blocks to your model.

6 Remove the Signal Generator block and add the Analog Input block in its
place. Remove the Scope block and add the Analog Output block in its place.

The demo model xpcosc should look like the figure shown below.

[E1upc_osc =10] x|

|Fi|e Edit Miew Simulation Format Tools Help

CIO-DAST6021E 1000°2
ComputerBoands 1 5
Analg Input 54 +400g+1000°2 CI0-DAS 1502416
1 ComputerBoamds
CI2-DASIE0Z 16 Transfer Fon Anal.:lbg Dutput

CGI2-DAS1602 16 1
xPG Tamget tutorial model

1-16

Adding 1/O Blocks with the xPC Target™ Library

You cannot run this model unless you have the I/O board shown installed in
your target PC. However, you can substitute the driver blocks for another
I/0 board that is installed in the target PC.

Your next task is to define the I/O block parameters. See “Defining I/O Block
Parameters” on page 1-23.

1-17

1 xpc Target™ 1/QO Library

Adding 1/0 Blocks with the Simulink Library Browser
The xPC Target product includes a Simulink block library for I/O drivers. The
highest hierarchical level in the library is grouped by I/O function. The second
level is grouped by board manufacturer. The manufacturer groups within this

second level contain the driver blocks for specific boards.

This procedure uses the Simulink model xpc_osc.mdl as an example of how
to add and connect I/O blocks:

1 In the MATLAB window, type
XpC_o0Ssc

The Simulink block diagram opens for the model xpc_osc.mdl.

=101
File Edit Wiew Simulabion Format Tools Help
oooo 100042
ee " 2 4005+100042 |—|
< +4005+
- -
Sianal Transfer Fcn
Generatar
Scopel
=PC Tamet tutorial rmodel

2 In the Simulink window, from the View menu, click Library Browser.

1-18

Adding 1/O Blocks with the Simulink® Library Browser

The Simulink Library Browser window opens. Alternatively, you can

open the Simulink Library Browser by typing simulink in the MATLAB
Command Window.

=] simulink Library Browser =]
File Edit *“iew Help

JJD = = JJIErﬁersearchterm jﬂ L‘%‘l‘

Likraries Likarary: Simulink | Search Resu 4| P
= | Simulink - a
- Cammonly Used ... 7 & | Commaonly Used Blodks
- Zontinuous

- Discontinuties Continuous

- Discrete

- Logic and Bit Cp... e
Discontinuities

- Lookup Tahkles

- Math Operations
- foclel Yerification
- Moclel-yyice Liiliti...

Driscrate

-

>
- Ports & Subsyst... TTE Logic and Bit Operation:
- Signal Attribtes
- Zignal Routing
! ¥l Lookup Tables
- Sinks

- SOUFCES =1l | _pl—l

Block Description x
Simulink/Commonly Used Blocks
b :ﬁ b
Showing: Simulink. &

You can access the xPC Target I/O library by right-clicking xPC Target
and then clicking Open the xPC Target Library.

1-19

1 xpc Target™ 1/QO Library

Alternatively, you can access driver blocks using the xPC Target I/O driver
library. See “Adding I/0O Blocks with the xPC Target Library” on page 1-13.

3 Double-click xPC Target.

A list of I/0 block function groups opens.

E: Simulink Library Browser H[=]
File Edit “iew Help
JJ O = = JJIErder search term | 4 L‘%‘I‘
Libraties Library: xPC Target | = <|»
— Y
E’ AT
-- &0 Frame] e
- ARINC-429 "3 A Frame
Asynchronous ... :
& Audio "3 arincaze
G- CAM —
[+~ Counter [|
"D.'I.E'. J % Asynchronous |
[+~ Digital Input —
F¥J- Diggtal Output P2 audio
G- GPIB — _|j
Bl Incremertsi Enc... = |24 | »
Block Description *
#PC Target/AM: Select the settings for
@ the subaystem block.
Showing: xPC Target &

4 Open a function group. For example, to open the A/D group for
Measurement Computing, double-click A/D, and then click Measurement
Computing.

1-20

Adding 1/O Blocks with the Simulink® Library Browser

A list with the A/D driver blocks for Measurement Computing opens.

[Z]simulink Library Browser =]

File Edit *“iew Help

JJ O = = JJIErdersearchterm jﬁ %

Likraries neasurement Computing I 4| »
——— e renrEre
: i =] =
L_—_|.. FiNIN] [« “ERTAITS —
Compawicard 1p C]O-DASAG 33
.&d\-‘al‘ltech Eralcy IPpal
- Analogic
[=[=2 Y1 o
- Corten Grpeueisar 1k C|0-DAS1E JR
- Diata Transla. ..
- Diatmianid Cimreorioans & C1O-DAS1H0
eraloy IPpat

- Zeneral Sta. .
- Humuzoft OO s1gta 1

Cempurican p - G]0-DAS 1602

- Meithley Met. .. tralcdlrpa
- hleazureme...
[=[=5 34T BT
[+~ Mational Inzt. .. Copeuriurs b 0-DAS1602
- CIanser _ILI
- Real Time ... ;I | | F
Block Description »®
EE—— ®PC Target/ATDMeasurement ﬂ
P Computing/C10-DAS16 330 ; CIO-
D=1 65300
PN TR T = TR Y d
Showing: =PC Targetf 4D Measurement Computing Y

5 From the block library, click and drag the name of an A/D board to the
Simulink block diagram. Likewise, click and drag the name of a D/A board
to your model.

The Simulink software adds the new I/O blocks to your model.

6 Remove the Signal Generator block and add the analog input block in its
place. Remove the Scope block and add the analog output block in its place.

1-21

1 xpc Target™ 1/QO Library

The model xpc_osc should look like the figure shown below.

[S1xpc_osc
|Fi|e Edit Miew Simulation Format Tools Help

=10l x|

GI2-DAS1602M116 10002
ComputerBoands 1 5

Anakg Input g<+400s+1000"2
GI2-DASIE02 16 Transfer Fcn

xPG Tamget tutorial model

SI-DASI602ME6
1 ComputerBoads
Analbg Cutput

GI2-DAST1E02 16 1

You cannot run this model unless you have the I/0 board shown above
installed in your target PC. However, you can substitute the driver blocks
for another I/0 board that is installed in the target PC.

Your next task is to define the I/0 block parameters. See “Defining I/O Block

Parameters” on page 1-23

1-22

Defining 1/O Block Parameters

Defining 1/0 Block Parameters

The I/0 block parameters define values for your physical I/0 boards. For
example, I/0 block parameters include channel numbers for multichannel
boards, input and output voltage ranges, and sample time.

This procedure uses the Simulink model xpc_osc.mdl as an example, and
assumes you have added an analog input and an analog output block to your
model. To add an I/O block, see either “Adding I/O Blocks with the xPC
Target Library” on page 1-13 or “Adding I/O Blocks with the Simulink Library
Browser” on page 1-18

1 In the Simulink window, double-click the input block labeled Analog
Input.

The dialog box for the A/D converter opens.

2 Fill in the dialog box. For example, for a single channel enter 1 in
the Number of Channels box, select —10 V for the input range, and
select single-ended (16 channels) for the MUX switch position.
Enter the same sample time you entered for the fixed step size in the
Simulation > Configuration Parameters dialog box Solver pane.
Enter the base address for this ISA-bus board.

1-23

1 xpc Target™ 1/QO Library

The Block Parameters dialog box should look similar to the figure shown
below.

[=] source Block Parameters: CID-DAS1602 16 x|

—adcbpidas [mask] [link]

ClO-DASTED2ME
ComputerB oardz
Analog Input

—Parameters
Humber of channels:

Range veu:t-:ur:l + 100

L] L

[nipLat cnupling:l Single-ended (16 channels]

Sample time:
{0001

Base addreszz [for example Oxd000];
| 0300

] Cancel Help

3 In the Simulink window, double-click the output block labeled Analog
Output.

The dialog box for the D/A converter opens.

4 Fill in the dialog box. For example, for one channel enter [1] in the
Channel Vector box; for an output level of —10 V enter the code [-10] in
the Range Vector box. Enter the same sample time you entered for the
fixed step size in the -> Simulation > Configuration Parameters dialog
box Solver pane. Enter the base address for this ISA-bus board.

1-24

Defining 1/O Block Parameters

The Block Parameters dialog box should look similar to the figure shown

below.

E Sink Block Parameters: CIO-DAS1602 16 1 il

—dachiza [mask] [link]

Cl0-DASTEDZAE
ComputerBoards
Analog Qukput

—Parameters

Channel vectar:

1]

R ange wectar:

[I-10]

Reszet vectar:

HH

|1]

Initial value wectar:

[

Sample time:

f0.001

Baze address [for example Dxd000);

| 0300

OE.

Cancel Help Spply

If you change the sample time by changing the target object property
SampleTime, the sample times you entered in both of the I/O blocks are set to
the new value. The step size you entered in the Configuration Parameters

dialog box remains unchanged.

Your next task is to build and run the target application. See “xPC Target
Application” in the xPC Target Getting Started Guide.

1-25

1 xpc Target™ 1/QO Library

1-26

Serial Communications
Support

e “Serial Drivers” on page 2-2
e “xPC Target RS-232 and 422/485 Drivers (Composite)” on page 2-6
® “Boards and Blocks — Alphabetical List” on page 2-22

2 Serial Communications Support

2-2

Serial Drivers

In this section...

“Introduction” on page 2-2

“Hardware Connections for RS-232” on page 2-4

“Host and Target PC Communication” on page 2-4

Introduction

The xPC Target software interfaces the target PC to serial devices using
either the COM1 or COM2 port of the main board, through Quatech® drivers,
through Diamond Systems drivers, or through Commtech drivers.

The xPC Target software supports RS-232 I/0O communication with the
following:

® Serial ports on the target PC

e Third-party Quatech PCI boards (http://www.quatech.com)

® Third-party Diamond Systems PC/104 boards
(http://www.diamondsystems.com)

For the target PC serial ports, the software can use these ports as the RS-232
I/0 devices. You can initiate RS-232 communications with these ports and the
accompanying xPC Target drivers.

The software also supports the following:

e RS-232 — QSC-100 and ESC-100 PCI boards from Quatech

e RS-422, RS-485 — QSC-200/300 PCI boards and DSCP-200/300 dual
channel PXI boards from Quatech, Fastcom: 422/2-PCI adapter, Fastcom:
422/2-PCI-335 from Commtech (http://www.commtech-fastcom.com)

e RS-232, RS-422, RS-485 — Emerald-MM and Emerald-MM-8 PC/104
boards from Diamond Systems. These boards provide 4 and 8 serial ports,
respectively. These boards are jumper-configurable for the following
models:

http://www.quatech.com
http://www.diamondsystems.com
http://www.commtech-fastcom.com/

Serial Drivers

= EMM-XT, which can support two ports each for RS-232 and RS-232.
= EMM-4485-XT, which supports four ports for RS-422 and RS-485.
= EMM-4M-XT, which supports four ports for RS-232, RS-422, and RS-485.

See the manufacturer documentation for details on how to configure your
jumpers.

Note When you configure the board for the RS-485 protocol, configure
your model to manually control the RTS bit to turn the transmitter on and
off. You must use a convention, such as counting sample time steps, to
decide when the model should turn off the transmitter after sending data.

The xPC Target block library provides a set of functionally similar drivers for
these boards. See “RS-232/422/485 Simulink Block Reference” on page 2-14
for a description of the driver blocks that support the different protocols.

The xPC Target block library supplies two types of drivers to support RS-232
I/0 communication, composite and obsolete:

® The composite drivers support RS-232 I/O for the target PC serial ports,
the Quatech RS-232, RS-422, and RS-485 I/0O devices, and the Diamond
Systems RS-232 I/O devices. These drivers support communication in
asynchronous binary mode. The xPC Target block library uses Simulink
blocks for the I/0 drivers. The composite drivers provide a simple ASCII
encode/decode for the send and receive RS-232, RS-422, and RS-485 blocks.
This set of drivers has the descriptive name “composite” because the driver
represents each functional piece of the driver as a Simulink block. For more
precise behavior, you can customize the RS-232 driver with these blocks.

The composite drivers also include internal drivers, which you might need
to access if you need to modify the composite subsystems for your use.
Note that you normally should not use the internal drivers, described in
Appendix A, “Serial Communications Support with Internal Drivers”.

® The obsolete drivers support RS-232 1/0 only for the target PC serial
ports. These drivers support synchronous, asynchronous, and binary

(asynchronous) communication mode. The xPC Target software uses a
model for this RS-232 I/O that includes both Simulink blocks for the I/0

2 Serial Communications Support

drivers and MATLAB structures for sequencing messages and commands.
See Chapter 3, “Serial Communications Obsolete Drivers Support” for a
description of these drivers.

Hardware Connections for RS-232

The xPC Target software supports serial communication with the COM1
and COM2 ports on the target PC.

Your target applications can use these RS-232 ports as I/0 devices. Typically,
the target PC is connected to an RS-232 device with a NULL modem cable.
However, this depends on the DTE/DCE configuration of the devices, and you
might not use a NULL modem cable.

Tarmget PC RS-232 HS'_EE'E
cannection Device

—

Host and Target PC Communication

If the host PC and target PC are connected using serial communication, one
COM port on the target PC is dedicated for communication with the host PC.
You cannot use this COM port in your block diagram as an I/O device.

For example, if the target PC uses COM1 for the communication with the host
PC, COM1 cannot be used by your block diagram. If you try to use COM1

as an I/O device in your block diagram, an error message is displayed. The
error message appears when you attempt to build and download the target
application. In this example, you must use COM2 as an I/O device in your
block diagram.

If you are using TCP/IP as your host PC to target PC communications
protocol, then you can use any of the COM ports for RS-232 1/0.

Serial Drivers

Note When you use composite driver blocks, COM1 and COMS3 often share
interrupt line 4. Similarly, COM2 and COM4 often share interrupt line 3. If
you use COM1 for host-target communication, you cannot also use COM1

or COM3 in a model. This is because the shared interrupt is caught in the
xPC Target operating system. However, if COM3 uses an interrupt different
from that for COM1, you can use COM3 in a model while using COM1 for
host-target communications. If COM1 and COMS3 share an interrupt line, you
can use COM2 or COM4 as your RS-232 I/O port.

2 Serial Communications Support

2-6

xPC Target RS-232 and 422/485 Drivers (Composite)

In this section...

“Introduction” on page 2-6

“Adding RS-232 Blocks” on page 2-7

“Building and Running the Target Application (Composite)” on page 2-13
“RS-232/422/485 Simulink Block Reference” on page 2-14

Introduction

This section describes the components that make up the RS-232 and
RS-422/485 composite drivers, and how you can create a model using
these drivers. These drivers perform RS-232 or RS-422/485 asynchronous
communications.

The xPC Target software supports the target PC serial ports (main board),
Quatech RS-232/422/485 devices, Diamond Systems RS-232 devices, and
Commtech Fastcom: 422/2-PCI adapters with composite drivers. These
drivers distribute the functionality of the device across several subsystems
and blocks. For most RS-232/422/485 requirements, you can use these
RS-232/422/485 drivers as they are implemented. However, if you need to
customize the xPC Target RS-232/422/485 drivers, the composite nature of
the target PC serial port, Quatech RS-232/422/485, Diamond Systems RS-232,
and Commtech Fastcom drivers enables you to do so. See Appendix A, “Serial
Communications Support with Internal Drivers” for details.

Note the following characteristics of the Commtech Fastcom: 422/2-PCI
adapter boards (http://www.commtech-fastcom.com):

® The Fastcom 422/2-PCI board has two independent RS-422 channels.

® The Fastcom 422/2-PCI board can handle baud rates up to 1.5
megabits/second.

® The Fastcom 422/2-PCI board hardware FIFO is fixed at 128 bytes for
receive and transmit.

http://www.commtech-fastcom.com/

xPC Target™ RS-232 and 422/485 Drivers (Composite)

Note the following characteristics of the Commtech Fastcom:
422/2-PCI-335 and Fastcom: 422/4-PCI-335 adapter boards
(http://www.commtech-fastcom.com):

® The Fastcom 422/2-PCI-335 board has two independent RS-422/485
channels, the Fastcom 422/4-PCI-335 board has four independent
RS-422/485 channels.

e The Fastcom 422/2-PCI-335 and Fastcom 422/4-PCI-335 board can handle
baud rates up to 6.25 megabits/second.

Note Many of the blocks that support the RS-232 and RS-422/485 composite
drivers are common across the main board, Quatech, and Diamond Systems

boards. The descriptions for these blocks are applicable for all drivers, with

specific board notes as appropriate.

Adding RS-232 Blocks

You add RS-232 subsystem blocks to your Simulink model when you want
to use the serial ports on the target PC, Quatech QSC-100 or ESC-100, or
Diamond Systems Emerald-MM or Emerald-MM-8 serial device connected to
the target PC, for I/0.

After you create a Simulink model, you can add xPC Target driver blocks and
configure those blocks. The following procedure describes how to use the
serial ports on the target PC for I/O with the composite drivers.

Before you start, decide what COM port combinations you want to use. The
example has you configure the Baseboard Send/Receive block. To properly
configure this block, you need to select serial port pairs. This parameter
specifies the ports for which you are defining transmit and receive. You have
a choice of the following:

® Comi/none

® Com2/none

Com1/Com3

Com2/Com4

http://www.commtech-fastcom.com/

2 Serial Communications Support

2-8

® none/Com3

® none/Com4

® Custom

If you choose either the Com1/Com3 or Com2/Com4 pair, check that the port pair

shares an interrupt. If the port pair does not share an interrupt, you cannot
use the two ports as a pair.

Alternatively, you can define a Custom port pair. A Custom port pair is one
that does not match the existing combinations of port pairs. When you select
Custom, the dialog allows you to configure your own port pair. For example,
you can set the IRQ and two addresses for the port pair. If one of the ports is
not used, set that address to 0.

Normally, the ports are set to the following:

COM1 — 0x3F8, IRQ 4

COM2 — 0x2F8, IRQ 3

COM3 — 0x3ES8 (if present), IRQ 4

COM4 — 0x2ES8 (if present), IRQ 3

A Custom port pair is one where one or both ports of the pair are set to
addresses other than these conventions, or one for which you want to assign
a different IRQ value. Some hardware allows you to set the IRQ numbers
independently.

If you choose the port pairs Com1/Com3 or Com2/Com4, you need to include one
Send/Receive subsystem block in the model. If you choose to use COM1 and
COM2, or COM1 and a custom port pair, you need to include two Send/Receive
blocks in the model.

The following example shows two models, one that uses a standard Com1/Com3
port pair, and one that uses custom port pairs:

1 In the MATLAB Command Window, type

xPC Target™ RS-232 and 422/485 Drivers (Composite)

xpclib

The xPC Target driver block library opens.
2 Double-click the RS-232 group block.

A window with blocks for RS-232 drivers opens.

Note This library contains three sections, Composite, Obsolete, and
Obsolete V1.0.

E!Lihrarf::-:pclih,.-"RSZSZ ;IEIEI

File Edit “iew Format Help

Composite drivers

bp
ASCI ASCH R5232
1 [} o 1 [} o
Encode | Decode | State p i E}. E)_ E:)_ E}_

ASCH Encode ASCH Decode REZ2322 State
t Quatech Mainboard Diamond Commtech
FIFO L FIFO L Ascii Decod F
Read wurite W2 L
FIFO read FIF O wurite W mscii Decode
Fro TR FIFo TF
Read HDRE o | Read BINARYS
FIFO ASCI read FIFO bin read

[

Obzolete Obsolets W 1.0

Alternatively, you can access the xPC Target block library from the
Simulink Library Browser. In the Simulink window, and from the View
menu, click Show Library Browser. In the left pane, double-click xPC
Target, and then click RS232.

2-9

2 Serial Communications Support

2-10

3 Drag and drop an ASCII Encode block to your Simulink model. This block
encodes input for the RS-232 Send Receive block.

4 Configure this block.

5 Drag and drop an ASCII Decode block to your Simulink model. This block
decodes output from the RS-232 Send Receive block.

6 Configure this block.
7 Double-click the Mainboard group block.

8 Depending on your port pair configuration, drag and drop one or two
Baseboard RS-232 Send/Receive blocks to your Simulink model.

9 Double-click the Baseboard RS-232 Send/Receive block.

10 Configure this block. Note the following:
® Pay particular attention to the Parameter group Board Setup entry.

* When you select the Receive Setup entry, for each channel, set the
value of the Receive Sample Time parameter to an appropriate sample
time value that is faster than the data being sent. Do not leave this
value at -1. You must set this for all channels, including channels that
you are not using; otherwise, you will receive an error when generating
code for the target application.

11 Add a Pulse Generator and Target Scope block.

12 Configure the Pulse Generator block so that its Pulse type is Sample
based.

The dialog changes to display a Sample time parameter. Enter a Sample
time that is slower than the one you set for Receive Setup.

13 From the Simulink Library Browser, select Sinks. Depending on your
configuration, drag and drop one or more Terminator blocks. Connect this
block to the unused RCV1 port to suppress unused port messages.

14 From the Simulink Library Browser, select Sources. Depending on your
configuration, drag and drop the Ground block. Connect this block to the
unused XMT3 port to suppress unused port messages.

xPC Target™ RS-232 and 422/485 Drivers (Composite)

Your model should look similar to one of the following figures. The first
figure shows a single-block model. This model uses the Com1/Com3 port
pair. The second figure shows a two-block model. This model uses two sets
of Custom port pairs.

[Z]rs232mainboard_maodel -0l x|

File Edit Wew Simulation Format Tools Help

R w1 250D T ROV _p-.a
[] L -
- Encode .
Fulse ASCH Encode Basebaoard Terminatar
Zenearator RE23Z

Send Receire

ﬁ) ASCH Target Scope
I '
FMTE RCVE s Decode ! Id: 1

Zround

AMECH Decode

Baseboard Seope (<L)

Serial

2-11

2 Serial Communications Support

[Z]rs232mainboard_model2h) [m] [

File Edit ViewlSimuIatiDn Format Tools Help

ASCH
T T
{1 Encode b LM T1 RCWY
T inat
Fulse ASCI Encode Bazeboard Erminatat
Generator REz32
Send Receive
=+ —=]
Zround Terminatord
Baseboard
Serial
ASCH Target Scope
E,—}XMTQ RCWZ2 o O 1
= Decode Id: 1
Ground2
Baseboard ASCI Decode
RS5232 Scope (xPC)
Send Receire
=)
Groundd Terminatorz
Bazeboard
Seriall

15 Double-click a Baseboard RS232 Send Receive block. Enter values to
configure the port(s) on the target PC for this board.

2-12

xPC Target™ RS-232 and 422/485 Drivers (Composite)

For example, if the target PC is connected to COM1, your Send Receive
block dialog box should look similar to the following figure. Note, this is
a dynamic dialog box that changes depending on the Parameter group
selection.

E! Function Block Parameters: Baseboard Serial il

—Bazeboard B5232 Send Receive [maszk] [link)

B azeboard
R5232 Send Receive Subsystem

—Parameters

Parameter group: [FefE

Configuration: | Com1/none LI

0k, Cancel | Help | Apply |

For more information on entering the block parameters, see
RS-232/RS-422/RS-485 Send/Receive (Composite).

16 Click OK. The Send Receive block dialog box dialog box closes.

Your next task is to build and run the target application.

Building and Running the Target Application
(Composite)

The xPC Target software and Real-Time Workshop® create C code from
your Simulink model. You can then use a C compiler to create executable
code that runs on the target PC. This topic assumes that you know how to

configure your model to create an xPC Target application. (See “xPC Target
Application” in the xPC Target Getting Started Guide for details.)

After you have added the RS-232 blocks for the main board to your Simulink
model and configured your model, you can build your target application.

2-13

2 Serial Communications Support

2-14

Note You cannot use a serial port to communicate between the host PC and
target PC with this example. You can only use COM1 if it is not already in
use for host-target communications. Additionally, if COM1 and COMS3 share
an interrupt, you cannot use COMS3 if COM1 is already in use for host-target
communications.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Build Model.

2 In the MATLAB Command Window, type

+tg or tg.start or start(tg)

RS-232/422/485 Simulink Block Reference

The xPC Target software supports RS-232/422/485 communication with
driver blocks in your Simulink model.

This section includes the following topics:

e “Signal Data Types” on page 2-15 — Describes signal data types that
composite drivers support.

e ASCII Encode/Decode (Composite) — (Generic) Describes encoder and
decoder blocks. Encoders convert input signals for the send/receive
subsystem to ASCII strings. ASCII decoders parse the string from the
Send/Receive subsystem.

® FIFO Read/Write (Composite) — (Generic) Describes FIFO read and write
blocks.

* RS232 State (Composite) — (Generic) Monitors the hardware error state
information that is present in the output vector from all blocks.

e RS-232/RS-422/RS-485 Send/Receive (Composite) — Provides blocks for
sending and receiving.

® Modem Control (Composite) — Controls the state of either or both of the
RTS and DTR output lines.

® Modem Status (Composite) — Reads the states of the four input modem
control lines.

xPC Target™ RS-232 and 422/485 Drivers (Composite)

Signal Data Types

Signals between blocks in composite drivers can be one of several basic data
types, 8-bit and 16- or 32-bit. All of these types are structures.

8-bit data types are NULL-terminated strings that are represented as
Simulink vectors. The width is the maximum number of characters that
can be stored. In the following figure, M is the actual set of stored characters
and N is the maximum number of characters that can be stored. This figure
illustrates 8-bit int NULL-terminated and 8-bit uint NULL-terminated data

types.

|-l n b| unused values
l#] Jc]fo] [w]o[rl[o[o] ‘T/
ot N - |

This string has 11 characters terminated with a NULL byte (0). This data
type cannot contain a NULL byte as part of the real data.

16- and 32-bit data types use the first element of the vector as a count of the
valid data. In the following figure of a 16-bit data type, C is the count of the
valid data, N is the width of the vector. This figure illustrates count + 16-bit
int and count + 16-bit uint data types. It also applies to count + 32-bit int
and count + 32-bit uint data types

C

|-I-I-| unused and
undefined walues

| i N -

These serial blocks interpret each entry in the vector as a single character.
The low-level hardware Send block writes the low-order byte of each entry to
the UART. The 16- and 32-bit data types allow the embedding of any 8-bit
data value, including 0. The 8-bit data type is most useful with the ASCII

2-15

2 Serial Communications Support

2-16

Encode and Decode blocks. The 16- and 32-bit data types are most useful for
binary data streams.

Handling Zero Length Messages

As a general rule, configure a FIFO read block of your model serial 1/0 to
execute faster than the model receives data. Doing so prevents the receive
FIFO buffer from overflowing. This implies that you must configure your
model to deal with the possibility that there is no message on a FIFO read
block output.

Receive FIFOs might not always have enough characters to satisfy a FIFO
read operation. Any model that receives serial I/O might have a FIFO read
block that will execute in this situation. This will cause a FIFO read block to
perform one of the following, depending on how you configure the behavior:

¢ Return the last message it received

¢ Return a zero length message

The xPC Target library of composite serial drivers has three FIFO read
blocks, FIFO Read HDRs, FIFO Read Binary, and FIFO Read (described in
FIFO Read/Write. For the FIFO Read HDRs or FIFO Read Binary blocks, you
configure this behavior with the Output behavior parameter. The FIFO
Read block always returns either a new message or a zero length message.

If you need to execute model code only if a new message arrives, check the
first element of the returned vector, depending on the string data type, as
described in the following. If the message has non-zero length, enable a
subsystem to process the new string; otherwise, do not process it.

¢ In the 8-bit data type, the returned string is NULL-terminated. Therefore,
if the first element is 0, the string has zero length and the FIFO read did
not detect a new message.

¢ In the 16- and 32-bit data types, the first element is the number of
characters in the string. This value is 0 if the FIFO read did not detect
a new message.

xPC Target™ RS-232 and 422/485 Drivers (Composite)

Controlling When You Send a Message

You can use the structure of both serial data types (“Signal Data Types” on
page 2-15) to control when a message is sent. In both cases, a 0 in the first
position indicates an empty string.

e 8.bit data types — A value of 0 value in the first position is the NULL
terminator for the string.

® 16- and 32-bit data types — The first position is the number of characters
that follow.

If you connect an empty string to the XMT port on one of the send/receive
subsystems, no characters are pushed onto the transmit FIFO. You can get
this empty string using one of the following:

¢ [f you have a single string that you want to send occasionally, use the
Product block to multiply the entire string by either O or 1. In this case,
the 0 or 1 value becomes a transmit enable. To optionally optimize this
operation, you can use a Demux block to extract the first element and
multiply just that element by O or 1, then use the Mux block to combine
it again.

e Use a Manual Switch, Multiport Switch, or Switch block (configured for two
ports to choose between different messages with one of the choices being
a vector of all 0 values). The Switch block only selects between vectors
that all have the same width. However, because the string length does not
need to use the whole vector, you just need to fill them to the same width
with 0 values following your data.

Defining the Commtech Fastcom Baud Rate for Commtech
Fastcom 422/2-PCl Boards

The Commtech Fastcom 422/2-PCI board can handle baud rates up to 1.5
megabaud. To configure a baud rate for the board, you need to set the
following parameters. Note, this section applies to only Commtech Fastcom
422/2-PCI boards, not Commtech 422/2-PCI-335 and 422/4-PCI-335 boards.

® Clock Bits in the Fastcom 422/2-PCI Send Receive block with the
Parameter group parameter set to Board Setup

2-17

2 Serial Communications Support

2-18

* Baud Divisor in the Fastcom 422/2-PCI Send Receive block with the
Parameter group parameter set to Basic Setup

The Fastcom 422/2-PCI board has two serial channels, each of which has

an independent counter (baud clock). A master clock generator, which has

a phase locked loop, controls the master clock for both serial channels. The
master clock generates a maximum baud rate for both channels. The block
determines the actual baud rate of a channel by dividing the maximum baud
rate from the master clock by the baud rate divisor (n).

Desired freguency in Baud Clock
|
g BT
locked loop Ehannel 1
l
a, b in Baud Clock
Channel 2

Fastcom 422.-2 PCI Board

To correctly set the block parameters for this board, choose a maximum baud
rate, as follows. This procedure assumes that both channels require different
baud rates. Determine a common base clock that can be divided to produce
the required baud rates for both channels, as follows:

1 In the MATLAB Command Window, type a command like the following.
With a desired frequency (for example, 1.5e6) as the desired input, the

xPC Target™ RS-232 and 422/485 Drivers (Composite)

fc422mexcalcbits utility calculates parameter values that you can use to
configure the board rate for your board.

[a b df] = fc422mexcalcbits(1.5€e6)

This command returns three values.

a = 12199144
b = 24
df = 1500000

2 Examine the df value. The df value is the actual frequency the board
will be able to attain compared to your desired frequency. If the actual
attainable frequency is not accurate enough, you might want to try another
frequency. In this example, the board can match the desired frequency of
1500000 (1.5e6).

2-19

2 Serial Communications Support

2-20

3 Enter the first two values in the Clock Bits parameter of the Fastcom

422/2-PCI Send Receive block with the Parameter group parameter set
to Board Setup.

E: Function Block Parameters: Fastcomm 422 /2-PC1 X|
—RS5422/485 Send Receive [mazsk] (link]

QA5C-200/300

Luatech

R5422/485 Send Receive Subszustem

—Parameters

Parameter group: I Board Setup LI
IRQ nurmber:

|10
Clock Bitz [12199144 24] = 1.5MEB aud b ax):
12193144 24)

Slot:

[

ok LCancel Help Apply

After you define a maximum baud rate, you can set a unique baud rate for
each channel by choosing a different baud rate divisor for each channel. For
example, you can have Channel 1 have a baud rate of 750000 (1500000/2) and
Channel 2 have a baud rate of 1500000 (1500000/1). To set Channel 1 to have
a baud rate of 750000, with the Fastcom 422/2-PCI Send Receive block with
the Parameter group parameter set to Basic Setup, set

¢ Port to modify to 1

e Baud Divisor to 2

xPC Target™ RS-232 and 422/485 Drivers (Composite)

Note For very slow baud rates (less than 30000), you must use the Baud
Divisor parameter to achieve the desired baud rate.

2-21

2 Serial Communications Support

Boards and Blocks — Alphabetical List

2-22

ASCIl Encode/Decode (Composite)
|

Purpose ASCII Encode/Decode
Librclry xPC Target Library for RS232
Description The ASCII Encode block generates a UINTS output vector that contains

a NULL-terminated string based on a printf like format string and
data on the input ports.

The ASCII Decode block parses an input vector according to a format
specifier similar to scanf, and makes converted values available to a
Simulink program. The input vector to the ASCII Decode block can be
either 8-bit or 16-bit and signed or unsigned. If the data format is 16-bit,
the ASCII Decode block ignores the upper eight bits of each entry.

Encode Format string
Block Enter a printf like format string. Each format specifier such
Parameters as %d 1s replaced by the converted value that is present on the

corresponding input variable. Acceptable format specifiers are
%C, %d, %1, %0, %U, %X, %e, %f, and %g. These follow the normal
description for printf.

Number of variables
Enter the number of input ports to this block. The value on each
port is inserted into the output string with the format specified
in Format string.

Max output string length
Enter the maximum allowed length of the converted string, in
bytes. The block allocates enough memory to support this length
for the output port. When selecting this length, take into account
the NULL termination on the string.

If the converted string exceeds this length, the block returns an
error and does not write that string to the output port.

Variable types
Enter one of the following: {'double'}, {'int8'}, {'uint8'},
{'int16}, {'uint16'}, {'int32'}, and {'uint32'}. The default
is {'double'}. This parameter specifies the Simulink data types
allowed for the input ports. A cell vector with the same number

2-23

ASCIl Encode/Decode (Composite)

2-24

Decode
Block
Parameters

of elements as specified in Number of variables can specify
a different data type for each input port. A single element is
replicated. For example,

nvars=3
{ } — All three inputs are doubles.
{'uint8'} — All three inputs are uints.

{'uint16', 'double', 'uint8'} — There are three inputs: the
first is a uint16, the second is a double, and the third is a uints8.

Format string

Enter a scanf like format string. Each format specifier such as %d
needs to match a corresponding part of the input vector. Literal
strings in the format need to match the first character plus the
number of characters. Acceptable format specifiers are %c, %d, %1,
%0, %U, %X, %e, %f, and %g. These follow the normal description
for scanf.

Number of variables

Enter the number of output ports for this block. For example,

If Format string has the value of %xmore text%x and the input
vector for the block has cdmabcdefgh90, you must specify the
value of the Number of variables parameter as 2.

The first variable is assigned the value Oxcd. Next, the string
mabcdefgh is considered a match to more text because

¢ The first character for both strings is m.

¢ Both strings have the same number of characters.

The second variable is then assigned the value 0x90. Note that
the string mabcdefgh does not have to match exactly the value of

Format string. This behavior is different from that for scanf,
which requires an exact match.

ASCIl Encode/Decode (Composite)

Variable types
Enter one of the following: {'double'}, {'int8'}, {'uint8'},
{'int16}, {'uint16'}, {'int32'}, and {'uint32'}. The default
is {'double'}. This parameter specifies the Simulink data types
allowed for the output ports. A cell vector with the same number
of elements as specified in Number of variables can specify
a different data type for each output port. A single element is
replicated. For example,

nvars=3
{ } — All three outputs are doubles.
{'uint8'} — All three outputs are uints8.
{'uint16', 'double', 'uint8'} — There are three outputs:

the first is a uint16, the second is a double, and the third is a
uints.

2-25

ASCIl Decode V2

2-26

Purpose
Library

Description

Block
Parameters

ASCII Decode V2
xPC Target Library for RS232

The ASCII Decode block parses an input vector according to a format
specifier similar to scanf, and makes converted values available to a
Simulink program. The input vector to the ASCII Decode block can be
either 8-bit or 16-bit and signed or unsigned. If the data format is 16-bit,
the ASCII Decode block ignores the upper eight bits of each entry.

Format
Enter a scanf like format string. Each format specifier such as
%d must match a corresponding part of the input vector. Literal
strings in the format must match the first character plus the
number of characters. Acceptable format specifiers are %c, %d, %i,
%0, %U, %X, %€, %f, and %g. These follow the normal description
for scanf.

FIFO Read/Write (Composite)

Purpose
Library

Description

FIFO Read/Write

xPC Target Library for RS232

This section describes the FIFO Read and Write blocks. Of particular
note are the FIFO Read blocks, of which there are three. Use the
following guidelines when using these blocks:

Simple data streams — Use the FIFO Read block to read simple
data streams. An example of a simple data stream is one that has
numbers, separated by spaces, and that is terminated by a newline.
The FIFO Read block is a simple block that can easily extract these
numbers.

More complicated data streams — Use the FIFO Read HDRS and
FIFO Binary blocks for more complicated data streams. A more
complicated data stream can be one that contains headers, messages
of varying lengths, or messages with no specific terminators. A
message header consists of one or more character identifiers at

the beginning of a message that specify what data follows. ASCII
messages normally have a variable length and a terminator.
Typically, all messages of a particular device use the same predefined
terminator. Binary messages are normally of fixed length with no
specific terminator.

The FIFO Read HDRS or FIFO Binary blocks are also useful to work
with devices that can send different messages at different times.

All three FIFO read block types need their input to be of type
serialfifoptr, which is output from F type Send Receive subsystems.

The following are examples of when you can use the FIFO read block.

For an instrument that sends a string like the form

<number> <number> ... <CR><LF>

2-27

FIFO Read/Write (Composite)

2-28

use the simple FIFO Read block to read the message. Configure the
FIFO Read block Delimiter parameter for a line feed (value of 10).

m Function Block Parameters: FIFO read

x|

—azpnchronous FIFD Block: reader [mazk)] [link]
FIFD read

—Parameters

b axirnum read size:

[1024

kinimum read size:

[1
v Read to delimiter:

Drelimiter:

J1d

Dutput vector tupe: I 2 kit vint nll terminated LI

[tax and Min read size ports;
[~ Enable passthrough:

SampleT ime;

[0.001

ok, Cancel Help Apply

You should then connect the output to an ASCII Decode block with
a format that separates the numbers and feeds them to the output
ports.

For an instrument that can send one of a number of different
messages, and each message begins with a different fixed string,
use the FIFO Read HDRS block. For example, a digital multimeter

FIFO Read/Write (Composite)

connected through an RS-232 port, might send a voltage reading and
an amp reading with messages of the following format:

volts <number> <CR><LF>
amps <number> <CR><LF>

Configure the FIFO Read HDRs block Header parameter for
the volts and amps headers, in a cell array. Also configure the
Terminating string parameter for carriage return (value of 13)
and line feed (value of 10).

m Function Block Parameters: FIFOD ASCII read

—azpnchronous FIFD Block: reader [mazk] [link]
FIFD read multiple headers

—Parameters

Header:

I{'w:ults','amps'}{

Terminating string;

[[1310]

COutput behavior: I Haold lazt output if no new data LI
[Enable input;

b axirmum read size:

{1024

COutput wechar bppe: I 3 bit vint Al terminated LI

SampleT ime:

|01

ok Cancel Help Apply

2-29

FIFO Read/Write (Composite)

You should then connect the output to multiple ASCII Decode blocks,
one for each header and message. See the xpcserialasciitest and
xpcserialasciisplit models in xpcdemos for examples of how to
use this block in a model.

¢ For an instrument that sends a binary message, you typically know
the length of each full message, including the header. Configure
the FIFO Read Binary block Header parameter for the headers of
the message, in a cell array, and the Message Lengths parameter
for the message lengths. See the xpcserialbinarytest and
xpcserialbinarysplit models in xpcdemos for further examples of
how to use this block in a model.

The FIFO Read block is the read side of a FIFO read/write pair. There
are two modes for this block:

¢ If Read to delimiter is checked, this block only reads elements if
the chosen delimiter is found in the FIFO. If the delimiter has not
yet been written to the write side of this FIFO, the block returns a
zero length vector, as determined by the data type. (If you have a
zero length vector, you might want to have your application perform
a particular operation, or ignore the case.) If the delimiter is found,
the block returns elements up to and including the delimiter in the
output vector. Selecting this check box causes the block to perform
ASCII reads.

e If Read to delimiter is not checked, this block returns a number
of elements between Minimum read size and the smaller of the
number of elements currently in the FIFO and Maximum read size.
Selecting this check box cause the block to perform binary reads.

The FIFO Write block is the write side of a FIFO read/write pair.

FIFO Read Maximum read size
Block Specify the maximum number of characters that you will ever
Parameters expect to be returned by this block. The resulting vector size will

be one more than this maximum number of characters. This block

2-30

FIFO Read/Write (Composite)

needs the extra element to contain the number of characters that
are being returned. The block contains the characters as either

¢ A null terminator for the 8-bit data types
¢ The character count for the 16— and 32-bit data types

Be sure to enter a large enough number. If this number is too
small, the block might not be able to return anything. If this
number is larger than necessary, there is no effect. For example,
if you enter a value 10, but on execution there are 11 characters
up to the terminator in the FIFO, the block will not return any
characters.

If you select the parameter Max and Min read size ports, the
block interprets the value input on this port to be the maximum
number of characters to return. The actual maximum number of
characters to return is the smaller of the value on the max input
port or the maximum read size in the block parameters. This is
mainly useful in binary mode when the Read to delimiter check
box is not selected.

Minimum read size
Enter the smallest desired read size in bytes. The FIFO must
contain at least this number of elements before any elements will
be returned. If you select the Max and Min read size ports
check box, this value is superseded by the external signals.

Read to delimiter
Select this check box to enable the return of element sets that
terminate with the Delimiter value. Use this parameter when
working with character-based elements.

Delimiter
Enter the decimal value for an 8-bit input terminator. This
parameter specifies the value on which a FIFO read operation
should terminate. It works with the Read to delimiter
parameter. By default, this block looks for a carriage return. It

2-31

FIFO Read/Write (Composite)

only returns characters when one is found. For reference, the
decimal value of a carriage return is 13, a line feed is 10.

Output vector type
From the list, select count+32 bit int, count+32 bit uint,
count+16 bit int, count+16 bit uint, 8 bit int null
terminated, or 8 bit uint null terminated. This parameter
specifies the output vector type. The 8-bit data types produce a
null terminated string in the output vector. For 16- and 32-bit
data types, the first element contains the number of elements to
expect in the rest of the output vector.

Max and Min read size ports
Select this check box to enable the maximum and minimum input
ports. When this check box is selected,

The value from the maximum input port is the maximum number
of characters to be removed from the FIFO. Note that if this
number exceeds the value of Maximum read size, the block
disregards the value from the maximum input port and takes
the value of Maximum read size as the maximum number of
characters to be removed from the FIFO.

The value from the minimum input is the minimum number of
characters the FIFO must contain before any elements can be
returned. This value supersedes the value set with the Minimum
read size parameter.

Enable passthrough
Select this check box to pass the maximum read input through to
the passthrough output.

SampleTime
Base sample time or a multiple of the base sample time.

FIFO Write Size

Block Enter the number of elements that can be held in the FIFO at any

Parameters one time. If a write operation to the FIFO causes the number of
elements to exceed Size, an error occurs.

2-32

FIFO Read/Write (Composite)

Example

Input vector type
From the list, select count+32 bit int, count+32 bit uint,
count+16 bit int, count+16 bit uint, 8 bit int null
terminated, or 8 bit uint null terminated. This parameter
specifies the input vector type. The 8-bit data types need a null
terminated string in the output vector. For 16- and 32-bit data
types, the first element contains the number of elements to expect
in the rest of the input vector.

Data present output
Select this check box to create a Boolean output that is true if
data is present in the FIFO. The transmit side of the send/receive
subsystem uses this output. This output is given to the Enable TX
block, which enables the transmitter buffer empty interrupt.

SampleTime
Base sample time or a multiple of the base sample time.

ID
Enter a user-defined identifier for overflow messages.

The following are some examples of how you can set up the FIFO Read
block:

¢ In the transmit side of the interrupt service routine, the maximum
input port receives a value of 0 if the interrupt reason is not an empty
hardware FIFO, and the hardware FIFO size if the hardware FIFO
is empty. The minimum input port receives the constant value of 1.

On the receive side, the typical case with ASCII data has the
minimum and maximum input ports disabled. The Read to
delimiter parameter check box is selected and the Delimiter
parameter has the value of carriage return or line feed. The value of
the Maximum read size parameter is large (along the order of the
FIFO size) and the value of Minimum read size parameter is 1. In
this form, the driver acts like a nonblocking read line.

2-33

FIFO Read/Write (Composite)

® An alternate receive-side configuration for fixed-length binary blocks
of data has the value of the Maximum read size and Minimum
read size parameters set to the fixed length of the block. The Read
to delimiter parameter is not selected.

2-34

FIFO Read HDRS (Composite)

Purpose
Library

Description

Block
Parameters

FIFO Read HDRS block
xPC Target Library for RS232

The FIFO Read HDRS block identifies and separates ASCII data
streams that have embedded identifiers. The data following a particular
header might have varying lengths, but all have a common termination
marker such as <CR><LF>. While you can attain this same functionality
with the sample FIFO Read block, doing so requires a complicated
state machine.

Note If the same header has arrived in the FIFO more than once since
the block was last executed, the block will discard the older data and
only return the latest instance of the header. In this way, the block
catches up with data that arrives faster than the block executes.

The xpcdemos directory contains the following demos that illustrate
how to use the FIFO Read HDRS block: xpcserialasciitest and
xpcserialasciisplit.

Header
Enter the headers that you want the block to look for in a block
of data from the FIFO. Enter each header as an element in a cell
array.

Terminating string
Enter the terminating string for the data. Enter as many
characters as needed to define the end of string. This is typically
one or two characters.

Output behavior
From the list, select the behavior of the block if the FIFO has no
new data. Select Zero output if no new data if you want the
block to have no output if there is no new data. Select Hold last

2-35

FIFO Read HDRS (Composite)

output if no new data if you want the block to keep the output
from the last FIFO message.

Enable input
Select this check box to turn on a new input that takes Boolean
signals that enable or disable the read.

Maximum read size
Enter the largest desired read size in bytes. This parameter
specifies the width of the output vector and the maximum
number of elements to return. See Output vector type for more
information about data formats.

Output vector type
From the list, select count+32 bit int, count+32 bit uint,
count+16 bit int, count+16 bit uint, 8 bit int null
terminated, or 8 bit uint null terminated. This parameter
specifies the output vector type. The 8-bit data types produce a
null terminated string in the output vector. For 16- and 32-bit
data types, the first element contains the number of elements to
expect in the rest of the output vector.

SampleTime
Base sample time or a multiple of the base sample time.

2-36

FIFO Read Binary (Composite)

Purpose
Library

Description

Block
Parameters

FIFO Read Binary
xPC Target Library for RS232

The FIFO Read Binary block reads multiple binary headers from a
FIFO. This block identifies and separates data by finding unique byte
sequences (headers) that mark the data. Each header indicates the
start of a fixed length binary message.

Note If the same header has arrived in the FIFO more than once since
the block was last executed, the block will discard the older data and
only return the latest instance of the header. In this way, the block
catches up with data that arrives faster than the block executes.

The xpcdemos directory contains the following demos that illustrate
how to use the FIFO Read HDRS block: xpcserialbinarytest and
xpcserialbinarysplit.

Header
Enter the headers that you want the block to look for in a block
of data from the FIFO. Enter each header as an element in a cell
array either as a quoted string or a concatenation with char(val)
for non-printable byte patterns.

Message Lengths
Enter the message length of each byte of data as bytes of data.
Include the header in the length.

Output behavior
From the list, select the behavior of the block if the FIFO has no
new data. Select Zero output if no new data if you want the
block to have no output if there is no new data. Select Hold last
output if no new data if you want the block to keep the output
from the last FIFO message.

2-37

FIFO Read Binary (Composite)

Enable input
This check box enables or disables a FIFO read. Select this check
box to turn on a new input that takes Boolean signals that enable
or disable the read.

Maximum read size
Enter the largest desired read size in bytes. This parameter
specifies the width of the output vector and the maximum
number of elements to return. See Output vector type for more
information about data formats.

Output vector type
From the list, select count+32 bit int, count+32 bit uint,
count+16 bit int, count+16 bit uint, 8 bit int null
terminated, or 8 bit uint null terminated. This parameter
specifies the output vector type. The 8-bit data types produce a
null terminated string in the output vector. For 16- and 32-bit
data types, the first element contains the number of elements to
expect in the rest of the output vector.

SampleTime
Base sample time or a multiple of the base sample time.

2-38

Modem Control (Composite)

Purpose
Library

Description

Modem Control block
xPC Target Library for RS232

The Modem Control block controls the state of either or both of the RTS
and DTR output lines on the specified port.

This block requires an input of type double. If the input value is
greater than 0.5, the block asserts the RTS or DTR control bit to true
and the output goes to a positive voltage. If the value is less than or
equal to 0.5, the block asserts the RTS or DTR control bit to false and
the output goes to a negative voltage. If RTS or DTR is not selected, the
corresponding output is not changed.

Port (Quatech, Commtech)
From the list, choose a port. The Port parameter defines the port
to configure for this driver block.

RTS
Select this check box to control the RTS line for this board.

DTS
Select this check box to control the DTR line for this port.

Port (Diamond)
From the list, choose a port. The Port parameter defines the port
to configure for this driver block.

First port address (Diamond)
For Emerald-MM, this value should be the same as the First port
address parameter value you select in the Parameter Group:
Board Setup dialog of the Send/Receive block. See the Diamond
user’s manual documentation for the appropriate jumper settings.

For Emerald-MM-8, this parameter contains a value based on
the Base address value of the configuration register in the
Parameter Group: Board Setup dialog of the Send/Receive block.
See the Diamond user’s manual documentation.

2-39

Modem Control (Composite)

Configuration (Mainboard)
From the list, choose a port. This parameter specifies the port
whose input modem control line states you want to read.
Normally, the ports are set to the following:
COM1 — 0x3F8
COM2 — 0x2F8
COM3 — 0x3E8
COM4 — 0x2E8

A Custom port is one that is set to an address other than these.

Slot (PCI boards)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

2-40

Modem Status (Composite)

Purpose Modem Status block
Librclry xPC Target Library for RS232
Description The Modem Status block reads the state of the four input modem

control lines.

This block has an output of type Boolean. If the input voltage is positive,
the output is true. If the input voltage is negative, the output is false.

Port (Quatech, Commtech)
From the list, choose a port. The Port parameter defines the port
to configure for this driver block.

CTS
Select this check box to monitor the CTS line.

DSR
Select this check box to monitor the DSR line.

RI
Select this check box to monitor the RI line.

DCD
Select this check box to monitor the DCD line.

Sample Time
Base sample time or a multiple of the base sample time.

Port (Diamond)
From the list, choose a port. The Port parameter defines the port
to configure for this driver block.

First port address (Diamond)
This parameter specifies the first port whose input modem control
line states you want to read. Do not change this value.

For Emerald-MM, this value should be the same as the First port

address parameter value you select in the Parameter Group:
Board Setup dialog.

2-41

Modem Status (Composite)

For Emerald-MM-8, this parameter contains a value based on the
Base address value in the Parameter Group: Board Setup dialog.

Configuration (Mainboard)
From the list, choose a port. This parameter specifies the port
whose input modem control line states you want to read.
Normally, the ports are set to the following:
COM1 — 0x3F8
COM2 — 0x2F8
COM3 — 0x3E8
COM4 — 0x2E8

A Custom port is one that is set to an address other than these.

Slot (PCI boards)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

2-42

RS-232/RS-422/RS-485 Send/Receive (Composite)

Purpose

Library

Description

RS-232/RS-422/RS-485 Send/Receive block
xPC Target Library for RS232

The dynamic dialog for these subsystem blocks allows you to perform
basic board setup and setup of send/receive data. You control parameter
visibility with the Parameter Group parameter and the port number.

There are two versions of this block, non-F and F (FIFO). All serial
boards plus the main board have these two versions. The primary
difference is that the F blocks bring the FIFO signal out of the
subsystem. For example

LMT1 RCV1R xMT1 FIFD1p
KMT2 RovEh ¥MT2 FIFD2f
LMTE RCVER XMTE FIFO3p
ESC-100 ESC-100
KMT4 Rov4 KMT4 FIFD4 b
RS23z2 Riz32
XMTS — ROVS b VTS RS B
Sand Recaive FIFE OUT
KMTE RCVER XMTE FIFOG R
KMTF RCVT XMT7 FIFO7
XMTE Rovep XMTE FIFDSk
ESC-100 ESC-100 F

¢ The non-F blocks have RCV outputs. These blocks have basic FIFO
read blocks inside the subsystem. They are most useful for simple
character streams. These subsystem blocks generate output as an
array of packed integers (settable at 8, 16, or 32 bits) with characters
in the lower byte and received status information in the upper byte.

2-43

RS-232/RS-422/RS-485 Send/Receive (Composite)

2-44

® The F blocks have FIFO outputs. These blocks give you greater
flexibility and allow you to use any one of the FIFO read blocks.

= FIFO Read block — A model that contains an F block in
combination with the FIFO Read block provides the same
capability as the non-F block.

= FIFO Read HDRS and FIFO Read Binary — A model that contains
an F block in combination with a FIFO Read HDRS or FIFO Read
Binary block provides greater capability than the FIFO Read
block. (See FIFO Read HDRS (Composite) and FIFO Read Binary
(Composite) for details.)

Only one Send/Receive block can exist for each interrupt. All ports that
use that interrupt must be associated with that block.

For example, if you have four ports configured on the mainboard, COM1
and COMa3 typically share an interrupt. In this case, COM1 and COM3
must then share the same Send/Receive block. COM1 is also of note
because you can use it for host PC/target PC communication. If COM1
is the host PC/target PC link, neither COM1 nor COMS3 can be used
with this block as long as they share an interrupt. The same is true for
COM2 and COMA4.

Each F Send Receive has Board Setup and Basic Setup configuration
parameter options that are the same as their non-F Send Receive block
counterparts. To provide direct access to the board, these blocks also
have a FIFO Setup parameter option. The following descriptions do not
distinguish between the F and non-F blocks unless necessary.

RS-232/RS-422/RS-485 Send/Receive (Composite)

Block
Parameters

The Parameter Group parameter allows you to choose which subset of
configuration parameters you want to modify.

Parameter Group
From the list, choose Board Setup. The visible set of parameters
changes according to your selection. The following screenshots
reflect the Send Receive block for the Quatech ESC-100.

Parameter Group: Board Setup

=] Function Block Parameters: ESC-100 x|

—ESC-100 R5232 Send Receive [maszk)] [link]

ESC-100
[luatech
RS5232 Send Receive Subszystem

—Parameters

Parameter group: [FefE

IRE number:

] 4 Cancel Help | Apply

Configuration (Mainboard)
From the list, choose combinations of port pairs (Com1/none,
Com2/none, Com1/Com3, Com2/Com4, none/Com3, none/Com4, or
Custom). This parameter specifies the ports for which you are
defining transmit and receive. A Custom port is one that does
not match the existing combinations of port pairs. For example,

2-45

RS-232/RS-422/RS-485 Send/Receive (Composite)

2-46

you can set the IRQ and two addresses or, if one of the ports is
not used, set that to O.

IRQ number (Quatech, Commtech)
Enter the number of the interrupt request line for this board. If

you do not know the interrupt request line number for this board,
at the MATLAB Command Window, enter

getxpcpei

This command displays all the PCI interfaces currently attached
to the target PC. From that display, find the instance of the board
controlled by this block. Each board uses a unique interrupt
request line number.

For Emerald-MM, set this to the IRQ chosen by jumpers on the
board. Set all four ports to the same IRQ.

For Emerald-MM-8, this block setting programs the board IRQ.

(Diamond) Not all IRQ values work in all target PC machines.
You should experiment to find a working combination.

Clock Bits (Commtech)
Enter the number of click bits to control a clock generator common
to both channels. This parameter adjusts the master clock of
both channels.

Master Clock Frequency (Commtech Fastcom 422/2-PCI-335,
422/4-PCI-335)
Enter the clock generator frequency for the master clock. Enter a
value between 64 MHz and 50 MHz, inclusive.

Use standard reference and rates (Commtech Fastcom
422/2-PCI-335, 422/4-PCI-335)
This check box enables you to use default values for the block.
Select this check box to use the default values for the Master
Clock Frequency parameter. If you clear this check box, you
can enter a custom value for the Master Clock Frequency

RS-232/RS-422/RS-485 Send/Receive (Composite)

parameter. This same check box also appears on the Basic Setup
option page for all ports. Selecting this box applies to all channels.

Slot (PCI boards)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpci

Base address (Diamond Emerald-MM-8)
Enter the base address of the board that you are setting up. This
is the address of the configuration register on the board. The first
port address referenced in Modem Control and Modem Status
blocks is offset 0x10 from the configuration register address, and
each subsequent port address is offset 0x8 from that.

You must set the configuration register address on the board
with a jumper. You can set the configuration register address

to one of the following addresses: 0x100, 0x140, 0x180, 0x1cO,
0x200, 0x240, 0x280, 0x2c0, 0x300, 0x340, 0x380, or 0x3c0. Note
that the xPC Target software assigns successive 8 byte addresses
to the eight UARTSs even though the hardware allows random
placement.

Be sure that these addresses do not conflict with the COM port
addresses listed in “Adding RS-232 Blocks” on page 2-7. Note that
if you set the configuration register address to 0x2c0, it conflicts
with COMZ2. If you set the configuration address to 0x3c¢0, it
conflicts with COM1.

2-47

RS-232/RS-422/RS-485 Send/Receive (Composite)

First port address (Diamond Emerald-MM)

From the list, select the first port address for the board. This
address is the first of four port addresses for the Emerald-MM
board. You must initially set this address on the board with a
jumper. The remaining three addresses follow consecutively in
increments of 0x8. Be sure that these addresses do not conflict
with the COM port addresses listed in “Adding RS-232 Blocks”
on page 2-7.

2-48

RS-232/RS-422/RS-485 Send/Receive (Composite)

Parameter Group
From the list, choose Basic Setup. The visible set of parameters
changes according to your selection. The following screenshots
reflect the Send Receive block for the Quatech ESC-100.

Parameter Group: Basic Setup

=] Function Block Parameters: ESC-100 x|

—ESC-100 R5232 Send Receive [maszk)] [link]

ESC-100
[uatech
R5232 Send Receive Subsystem

—Parameters

Farameter group: |{=E

Part ta rmodify: I 1

Baud rate: | 115200

F'arity:l Mone

[rata I:uits:l a

Stap bikz: I 1

Hardware FIFO size:l B4 deep

Ll Led Led L] L] L] e

FReceive FIFD intermipt Ievel:l half full

v Auto RTSACTS:

] 4 Cancel Help | Apply |

2-49

RS-232/RS-422/RS-485 Send/Receive (Composite)

2-50

Port to modify

From the list, choose a port. The Port to modify parameter
specifies the port for which you want to view or modify the
parameters.

For Baseboard drivers, the port is the Simulink block port, where
the upper port is 1 and the lower port is 2. For all other drivers,
the port number corresponds to the channel number.

Use standard reference and rates (Commtech Fastcom
422/2-PCI-335, 422/4-PCI-335)

This check box enables you to use default values for the block.
Select this check box to use the default values for the Baud
divisor and Sampling rate parameters. Selecting this check box
allows you to enter a value for the Baud rate parameter and also
selects the Prescale parameter. If you clear this check box, you
can enter custom values for the Baud divisor and Sampling
rate parameters, but must use the default value for the Baud
rate parameter. Clearing this check box also clears the Prescale
check box.

If selected:
e Reference is set to 14.7456 MHz.
¢ Prescale is disabled.

e Sampling rate is 16X (standard).

Select the baud rate from Baud Rate.

If not selected, you must provide a custom baud rate that is not on
the dropdown list to get the desired reference. For example, if you
have a desired baud rate of 1.0 MHz, you can use the following
equation to calculate the reference:

reference = baud rate x sampling rate x divisor x prescale

The following values give an acceptable reference that is less than
or equal to 50 MHz.

RS-232/RS-422/RS-485 Send/Receive (Composite)

reference = 1.10e6 x 16 x 1 x 1 = 16 MHz

Baud Divisor (Commtech)
Enter a divisor integer. The block determines the actual baud
rate for a particular channel by dividing the maximum baud rate
by this divisor. This number can be different for each channel.

Baud rate (Mainboard, Quatech, Diamond, (Commtech Fastcom
422/2-PCI-335, 422/4-PCI-335)
From the list, choose a baud rate.

(Diamond Emerald-MM) The Emerald-MM block lists the baud
rates with an HS label to indicate the rate if the board contains
the high speed crystal option.

Sampling rate (Commtech Fastcom 422/2-PCI-335, 422/4-PCI-335)
From the list, select 8x or 16x (standard) per port. This
parameter is enabled if you clear theUse standard reference
and rates parameter.

Prescale (Commtech Fastcom 422/2-PCI-335, 422/4-PCI-335)
For very slow baud rates, you might need to enable this divide
by 4 prescaler to achieve the desired rate. In most cases, you do
not need to enable this.

Parity
From the list, choose None, Even, 0dd, Mark, or Space. This
parameter defines the parity.

Data bits
From the list, choose either 5, 6, 7, or 8 to select the number of
bits per character.

Stop bits
From the list, choose either 1 or 2 to define the number of stop bits
for the port. Most modern hardware works fine with a character
stream that uses single (1) stop bits.

Hardware FIFO size (Quatech, Diamond)
From the list, choose either 64 deep, 16 deep, or 1 deep. This
parameter specifies the size of the FIFO in the UART. The

2-51

RS-232/RS-422/RS-485 Send/Receive (Composite)

2-52

Hardware FIFO size parameter affects both the receive and
transmit FIFOs. For example, specifying a FIFO size of 64 bytes
results in fewer interrupts. Fewer interrupts can allow more
processing to occur in the model.

The types of UARTS include

16450 — Maximum 1 byte depth

16550 — Maximum 16 byte FIFO depth

16750 — Maximum 64 byte FIFO depth

Receive FIFO interrupt level

From the list, choose 1, quarter full, half full, or almost
full. This parameter specifies the number of characters in the
Receive FIFO before an interrupt occurs. Receive interrupts occur
at least as often as this parameter specifies.

If a gap of at least 4 character times, the span of four characters,
occurs in a data stream, the UART requests an interrupt for
the receiver. The UART requests an interrupt regardless of the
value of Receive FIFO interrupt level. If there is at least one
character in the hardware FIFO, an interrupt is signaled.

(Commtech) The Fastcom 422/2—PCI and Fastcom 422/2-PCI F
blocks do not have this parameter as a dropdown list. Instead,
these blocks allow you to enter any number of bytes up to the
hardware FIFO size, with 64 as the default. Typically, a value of
8 to 16 is sufficient, but the value that you choose depends on the
speed of the incoming characters. Be careful that you do not enter
a value that causes too many interrupts.

Auto RTS/CTS (RS-232 boards)

Select this check box to enable the hardware-based handshake
for flow control. This RTS/CTS handshake feature of the UART
provides a reliable way to prevent loss due to hardware FIFO
overflow.

RS-232/RS-422/RS-485 Send/Receive (Composite)

Because of the large 64 byte FIFO in the hardware, flow control
that is based on software control in the interrupt service routine
can have problems. In most cases, the interrupt service routine

executes quickly enough to empty the hardware FIFO. However,
if you get hardware FIFO overruns, select this check box.

Assert on transmit (RS-422/485 boards)
From the list, select None, RTS, or DTR to specify the state of
the RTS or DTR line. The driver asserts the selected line upon
transmission.

Hardware handshake (Commtech Fastcom 422/2-PCI-335,
422/4-PCI-335)
Enable the hardware-based handshake for flow control. This
feature of the UART provides a reliable way to prevent loss due to
hardware FIFO overflow. From the list, select RTS/CTS to enable
this behavior; otherwise, select none.

Software handshake (Commtech Fastcom 422/2-PCI-335,

422/4-PCI-335)
Allows the UART to send the XOFF character if the receive
hardware FIFO gets too full. It then sends the XON character
when the receive FIFO empties. Because the UART handles this,
the XON/XOFF characters are sent immediately, even if the
transmitter is empty. From the list, select XON/XOFF to enable this
behavior; otherwise, select none.

XON character (Commtech Fastcom 422/2-PCI-335, 422/4-PCI-335)
Normally, enter 17 (Control Q). This is the default.

XOFF character (Commtech Fastcom 422/2-PCI-335, 422/4-PCI-335)
Normally, enter 19 (Control S). This is the default.

RS485 auto turnaround (Commtech Fastcom 422/2-PCI-335,
422/4-PCI-335)
Select this check box to enable RS-485 automatic turnaround.
In RS-485 mode, where the transmitters and receivers all use
the same differential pair of wires, you can enable only one
transmitter at a time. Select this check box to turn on the

2-53

RS-232/RS-422/RS-485 Send/Receive (Composite)

automatic transmitter control in the UART. The RTS output is
routed to the enable input of the RS-485 transmitter.

RS485 turnaround delay (Commtech Fastcom 422/2-PCI-335,

422/4-PCI-335)
Enter the desired RS-485 turnaround delay. The UART
automatically asserts RTS when there are characters in the
transmit FIFO. It deasserts RTS when the transmit FIFO empties
and the RS-485 turnaround default delay of O to 15 bit times
elapses. The transmitter output goes tristate (high impedance)
when disabled, which allows another device to transmit.

2-54

RS-232/RS-422/RS-485 Send/Receive (Composite)

The following describes the Parameter Group Transmit Setup
option, which is supported by only non-F Send Receive blocks).

Parameter Group
From the list, choose Transmit Setup. The visible set of
parameters changes according to your selection. The following
screenshots reflect the Send Receive block for the Quatech
ESC-100.

Parameter Group: Transmit Setup

=] Function Block Parameters: ESC-100 x|

—ESC-100 RS5232 Send Receive [maszk] [link]

ESC-100
[luatech
R5232 Send Receive Subaystem

—Parameters

Farameter group: [IRERE

Fort to mu:u:lif_l,l:l 1 LI
Tranzmit zaftware FIFO size:

1024

Tranzmit FIFD data t_l,lpe:l 3 bit wint Al terminated LI

ak. Cancel Help | Apply |

Port to modify
From the list, choose a port. The Port to modify parameter
specifies the port for which you want to view or modify the
parameters.

2-55

RS-232/RS-422/RS-485 Send/Receive (Composite)

2-56

Use standard reference and rates (Commtech Fastcom
422/2-PCI-335, 422/4-PCI-335)
This check box enables you to use default values for the block.

Transmit software FIFO size
Enter the transmit software FIFO size, in bytes. This parameter
specifies the size of the software FIFO used to buffer transmitted
characters.

Transmit FIFO data type
From the list, choose count+32 bit int, count+32 bit uint,
count+16 bit int, count+16 bit uint, 8 bit int null
terminated, or 8 bit uint null terminated. This parameter
specifies the data type of the transmitter. The 8-bit data types
require a NULL-terminated string in the input vector.

The 16- and 32-bit data types reserve the first full element to
contain the number of elements to expect in the rest of the input
vector. Only the low-order byte of each data element is sent.
Setting this data type allows a wider data type to hold the bytes.
If the data stream needs to include a NULL byte, you must select
one of the 16- or 32-bit data types.

RS-232/RS-422/RS-485 Send/Receive (Composite)

The following describes the Parameter Group Receive Setup option,
which is supported by only non-F Send Receive blocks).

Parameter Group
From the list, choose Receive Setup. The visible set of
parameters changes according to your selection. The following
screenshots reflect the Send Receive block for the Quatech
ESC-100.

Parameter Group: Receive Setup

] Function Block Parameters: ESC-100 x|

—ESC-100 R5232 Send Receive [mask) [ink]

ESC-100
Quatech
RS232 Send Receive Subsystem

—Parameters

Parameter group: [z

Pt to mu:u:lif_l.J:l 1 LI

Receive zoftware FIFD size:
{1024

Receive maximum read:
{1024

Receive minimum read:
f1
v Read to delimiter:

Drelimiter:
13

Feceive data type: | count+16 bit uint ;I

Receive SampleT ime:
-1

Ok, I Cancel Help Apply

2-57

RS-232/RS-422/RS-485 Send/Receive (Composite)

2-58

Port to modify

From the list, choose a port. The Port to modify parameter
specifies the port for which you want to view or modify the
parameters.

Use standard reference and rates (Commtech Fastcom
422/2-PCI-335, 422/4-PCI-335)

This check box enables you to use default values for the block.
Select this check box to use the default values for the Baud
divisor and Sampling rate parameters. Selecting this check box
allows you to enter a value for the Baud rate parameter and also
selects the Prescale parameter. If you clear this check box, you
can enter custom values for the Baud divisor and Sampling
rate parameters, but must use the default value for the Baud
rate parameter. Clearing this check box also clears the Prescale
check box.

If selected:

¢ Reference is set to 14.7456 MHz.

® Prescale is disabled.

e Sampling rate is 16X (standard).

¢ Select the baud rate from Baud Rate.

If not selected, you must provide a custom baud rate that is not on
the dropdown list to get the desired reference. For example, if you

have a desired baud rate of 1.0 MHz, you can use the following
equation to calculate the reference:

reference = baud rate x sampling rate x divisor x prescale

The following values give an acceptable reference that is less than
or equal to 50 MHz.

reference = 1.10e6 x 16 x 1 x 1 = 16 MHz

RS-232/RS-422/RS-485 Send/Receive (Composite)

Receive software FIFO size
Enter the size of the receive software FIFO, in bytes. This
parameter specifies the size of the software FIFO to buffer
characters between interrupt service and periodic execution.

Receive maximum read
Enter the maximum number of elements that you want returned
by a single call to this block. This parameter is also used to set
the output vector width. If the Read to delimiter check box is
selected, the maximum number of characters read is limited by
this parameter even if the delimiter is not found.

Receive minimum read
Enter the minimum number of characters to read. If the FIFO
does not contain at least this number of characters, the output
vector 1s empty.

Read to delimiter
Select this check box to have this block return all characters in
the FIFO up to and including the specified delimiter. If the block
does not find the delimiter in the FIFO, it returns no characters.

Note that if the buffer has hardware observed errors, such as
framing errors, characters are returned regardless of the presence
of the delimiter. This special case helps diagnose errors such as
mismatched baud rates.

Delimiter
Enter the numeric value of the character that is the message
delimiter. Any value from 0 to 255 is valid. The common case
looks for 10 (line feed) or 13 (carriage return).

Receive data type
From the list, select count+32 bit int, count+32 bit uint,
count+16 bit int, count+16 bit uint, 8 bit int null
terminated, or 8 bit uint null terminated. This parameter
specifies the data type of the receiver. The 8-bit data types
produce a null terminated string in the output vector. For 16- and

2-59

RS-232/RS-422/RS-485 Send/Receive (Composite)

32-bit data types, the first element contains the number of valid
elements in the rest of the output vector.

For 8-bit data types, only the character data is in the output
vector, and a NULL terminator is appended. The 16- or 32-bit
wide data types cause the error status from the UART to be placed
in the second byte of each data element. (The error status contains
the parity, overrun, framing, and break bits.) The character data
is in the bottom eight bits of each element; the first element of the
vector contains the number of data elements that follow.

Receive SampleTime
Base sample time or a multiple of the base sample time.

2-60

RS-232/RS-422/RS-485 Send/Receive (Composite)

The following describes the Parameter Group FIFO Setup option,
which 1s supported by only F Send Receive blocks).

Parameter Group
From the list, choose FIFO Setup. The visible set of parameters
changes according to your selection. The following screenshots
reflect the Send Receive block for the Quatech ESC-100.

Parameter Group: FIFO Setup

x
—ESC-100 R5232 Send Receive [mazk] [link]
ESC-100

[uatech
R5232 Send Receive Subsystem

—Parameterz

Fort to modify: | 1 j
Tranzmit zaftware FIFO zize:

1024

Tranzmit FIFD data tupe: | 8 bit uint null terminated ;I

Receive software FIFO zize:
1024

k. Cancel Help Apply

Port to modify

From the list, choose port 1 or 2. The Port to modify parameter
specifies the port for which you want to view or modify the
parameters.

2-61

RS-232/RS-422/RS-485 Send/Receive (Composite)

2-62

Transmit software FIFO size

Enter the transmit software FIFO size, in bytes. This parameter
specifies the size of the software FIFO used to buffer transmitted
characters.

Transmit FIFO data type

From the list, choose count+32 bit int, count+32 bit uint,
count+16 bit int, count+16 bit uint, 8 bit int null
terminated, or 8 bit uint null terminated. This parameter
specifies the data type of the transmitter. The 8-bit data types
require a NULL-terminated string in the input vector.

The 16- and 32-bit data types reserve the first full element to
contain the number of elements to expect in the rest of the input
vector. Only the low-order byte of each data element is sent.
Setting this data type allows a wider data type to hold the bytes.
If the data stream needs to include a NULL byte, you must select
one of the 16- or 32-bit data types.

Receive software FIFO size

Enter the size of the receive software FIFO, in bytes. This
parameter specifies the size of the software FIFO to buffer
characters between interrupt service and periodic execution.

RS232 State (Composite)

Purpose
Library

Description

Block
Parameters

RS232 State block
xPC Target Library for RS232

The RS232 State block monitors the board state information that is
present in the vector coming out of a receive port on a send/receive block.

The input data vector can be one of Int8, UInt8, Int16, or UInt16. If
the input vector is Int8 or UInt8, no error status is available and the
Boolean outputs are always false. If the input vector is Int16 or UInt16,
the upper byte should contain the error status bits from the UART.

This block accumulates errors over the whole input vector. An output
error state is true if it is true for any byte in the input vector.

The FIFO Hardware FIFO block puts the UART status in 16+32 bit data
streams. The RS232 State block looks at this status. Note that only the
FIFO Read block passes this status information to its output port.

Overrun error output
Select this check box to retrieve overrun error output. This output
1s true if the hardware FIFO in the UART was filled at any time
while a character in the input vector was being received.

Parity error output
Select this check box to retrieve parity error output. This output
1s true if any byte in the input vector has incorrect parity.

Framing error output
Select this check box to retrieve framing error output. This
output is true if a framing error occurs on any character in this
vector. For example, a framing error might occur if the baud rates
between the transmitter and receiver do not match.

Break interrupt output
Select this check box to retrieve break interrupt output. A break
interrupt output is not an error, but the UART treats it like an
error state. The break condition is detected if the serial line

2-63

RS232 State (Composite)

remains at logic 0 (negative voltage) for more than one character
time.

Note Disconnecting the serial cable does not cause a break with some
serial port hardware.

2-64

Serial Communications
Obsolete Drivers Support

® “Obsolete Drivers” on page 3-2

® “Boards and Blocks — Alphabetical List” on page 3-36

3 Serial Communications Obsolete Drivers Support

Obsolete Drivers

In this section...

“Introduction” on page 3-2

“xPC Target RS-232 Drivers (Obsolete)” on page 3-2

Introduction

The xPC Target software interfaces the target PC to serial devices using
either the COM1 or COM2 port of the main board.

This chapter describes the obsolete xPC Target blocks that communicate
with the COM1 or COM2 port of your main board. The obsolete drivers
support RS-232 I/0 only for the target PC serial ports. These drivers support
synchronous, asynchronous, and binary (asynchronous) communication mode.
The xPC Target software uses a model for this RS-232 I/0 that includes both
Simulink blocks for the I/O drivers and MATLAB structures for sequencing
messages and commands. These are older blocks for serial communication.
Consider using the composite serial communication blocks described in
Chapter 2, “Serial Communications Support” instead.

xPC Target RS-232 Drivers (Obsolete)

This section describes the components that make up the RS-232 obsolete
drivers, and how you can create a model using these drivers. This section
includes the following topics:

¢ “Simulink Blocks for RS-232 I/0 (Obsolete)” on page 3-3 — Add setup, send,
send/receive, and receive blocks to your Simulink model.

o “MATLAB Message Structures for RS-232 I/0 (Obsolete)” on page 3-3 —
Create message structures to sequence instructions to and from the RS-232
device.

e “RS-232 Synchronous Mode (Obsolete)” on page 3-4 — Add synchronous
driver blocks to have the device wait for a response before continuing with
other computations.

Obsolete Drivers

e “RS-232 Asynchronous Mode (Obsolete)” on page 3-14 — Add asynchronous
driver blocks if the device does not have to wait for a response before
continuing with other computations.

e “RS-232 Simulink Block Reference (Obsolete)” on page 3-27 — Description
of the RS-232 blocks for the obsolete drivers.

e “RS-232 MATLAB Structure Reference (Obsolete)” on page 3-27 —
Description of the RS-232 MATLAB structure for messages.

e “RS-232 Binary Mode (Obsolete)” on page 3-32 — Add binary driver blocks
to transfer raw data.

Simulink Blocks for RS-232 1/0 (Obsolete)

To support the use of RS-232, the xPC Target /O library includes a set of
RS-232 driver blocks. These driver blocks can be added to your Simulink
model to provide inputs and outputs using one or more of the RS-232 ports.

¢ RS-232 Setup — One setup block is needed for each RS-232 port you use
in your model. The setup block does not have any inputs or outputs, but
sends the initialization and termination messages.

e RS-232 Send/Receive (Synchronous Mode) — Send/Receive blocks
have inputs and outputs from your Simulink model, and wait for responses
to messages sent and received.

¢ RS-232 Send (Asynchronous Mode) — Send blocks have inputs from
your Simulink model, and wait for responses to messages sent.

e RS-232 Receive (Asynchronous Mode) — Receive blocks have output
from your Simulink model, and wait for responses to messages received.

MATLAB Message Structures for RS-232 1/O (Obsolete)

Communication is through a series of messages passed back and forth
between the target PC and the RS-232 device. To accomplish this, the
messages sent to the RS-232 device must be in a format that the device
understands. Likewise, the target PC must know how to interpret the data
returned from the RS-232 device.

The xPC Target software uses MATLAB structures to create messages and
map the input and output ports on the RS-232 driver blocks to the data

3 Serial Communications Obsolete Drivers Support

written and read from the RS-232 devices. The RS-232 Setup block sends
the messages in the initialization structure after downloading the target
application. The RS-232 Send/Receive, RS-232 Send, and RS-232 Receive
blocks repeat the sending of the messages in the send/receive, send, and
receive structures during each sample interval. When the target application
stops running, the RS-232 Setup block sends the messages in the termination
structure.

Below is an example of the send and receive message structure for
asynchronous communication. In this example, an external RS-232 device
requires a string with two floating-point numbers. The numbers are entered
from the Simulink model to the first and second input ports of the RS-232
Send driver block. The RS-232 device sends back two floating-point numbers
that are passed to the outputs of the RS-232 Receive driver block.

RSESE_STend

] |
R5232 fcnd[l} . RSES[E_Send[nJ

SendData-‘stazrt, 3£, %f, stop: b,
JnputPorts [1, 2]
Timecut4 .01

RSEEE_I\[’ﬁcclvc

] l
RS2 331Recclvc|;n Ce RSEB‘[E_Rﬁceivc[nJ

RecData-‘start, 3£, 3£, stop: 4, ’
OurputPorts [1, 2]

Timeour € .01

Eom-1

For more information on this example, see “Creating RS-232 Message
Structures (Asynchronous)” on page 3-22.

RS-232 Synchronous Mode (Obsolete)

Use synchronous mode when you need to receive a response before continuing
with other computations. In synchronous mode, data is sent to an external

Obsolete Drivers

device and the driver block waits for a response. In other words, the I/O driver
blocks or stops execution of the target application until an answer is received
from the external device or it reaches a time-out. This section includes the
following topics:

* “Notes for RS-232 Synchronous Mode” on page 3-5 — Overview of RS-232
communication with xPC Target blocks.

¢ “Adding RS-232 Driver Blocks (Synchronous)” on page 3-5 — Add the
setup, send, and receive blocks you need to your Simulink model for RS-232
communication.

® “Creating RS-232 Message Structures (Synchronous)” on page 3-11 —
Create the initialize, send/receive, and termination message structures you
need in the MATLAB workspace.

Notes for RS-232 Synchronous Mode. For the example in this section,
assume an external device (RS-232 device) includes a D/A conversion module
with four independent channels and an output voltage range of -10 to 10 volts.
Also assume that the external device outputs a new voltage if it receives a
serial string with a value to identify the D/A channel and the voltage value.

Use a Constant block as an input to the Send/Receive block to select the D/A
channel, and a Signal Generator block as a source for voltage values. Also,
set up the message structures to receive a confirmation message from the
external module after the target PC sends a message string to the device.

In synchronous mode, the data is sent to the external device and the block

waits until a response (for example, data) is received from the device before
the execution of the block is considered to be complete. In other words, the

I/0O driver blocks until an answer is received from the external device or

it reaches a time-out.

When it 1s necessary to receive a response before continuing with other
computations, synchronous mode is used, which implies that the Send &
Receive block is placed in your model. This block includes both input and
output lines.

Adding RS-232 Driver Blocks (Synchronous). You add RS-232 driver
blocks to your Simulink model when you want to use the serial ports on the
target PC for I/0.

3-5

3 Serial Communications Obsolete Drivers Support

After you create a Simulink model, you can add xPC Target driver blocks and
define the initialization, send/receive, and termination message structures:

1 In the MATLAB command window, type

xpclib

The xPC Target driver block library opens.

2 Double-click the RS-232 group block.

A window with blocks for RS-232 drivers opens.

E!Lihrarf::-:pclih,.-"RSZSZ
File Edit “iew Format Help

Note This library contains two main sections, Composite drivers and
Obsolete drivers. Refer to the Obsolete drivers section, where there are
two setup blocks. The second block is included for compatibility with xPC
Target Version 1.0.

=101 x|

Composite drivers

Read HDRS 2 |,

£} 2
ASCH o ASCH 1k o R5232 ab
Encode Decode State pL
ASCH Encode ASCH Decode REZ2322 State
t Quatech Mainboard Diamond Commtech
FIFO FIFD | Ascii Decod F
Read wurite W2 L
FIFO read FIF O wurite W mscii Decode
Fro TR FIFo TF

Read BINARY |,

FIFO ASCH read

FIFO bin read

[

Obzolete Obsolets W 1.0

3-6

Obsolete Drivers

Alternatively, you can access the xPC Target block library from the
Simulink Library Browser. In the Simulink window, and from the View
menu, click Show Library Browser. In the left pane, double-click xPC
Target, and then click RS-232.

3 From the Obsolete drivers area, drag and drop an RS-232 Setup block to
your Simulink model.

4 In the Library window, double-click the RS-232 Synchronous mode
group block. The library window with blocks for RS-232 synchronous
communication opens.

Note This library contains two Setup and Receive blocks. The second block
is included for compatibility with xPC Target Version 1.0.

E!Lihrary: xpclib; - |I:I|£|

File Edit Yiew Formab Help

RS 232
filzin bioad
SendiReceive

RS23E

W1.0 compatible

RS232
lizinboad F
Send/Receive

Send & Rece e

5 Drag and drop an RS-232 Send/Receive block to your Simulink model.

3 Serial Communications Obsolete Drivers Support

6 Add a Signal Generator and a Constant block.

Your model should look similar to the figure shown below. Note that inputs
on the RS-232 Send/Receive block are not defined or visible. The inputs are
defined in a MATLAB message structure, and visible only after you load
that structure into the MATLAB workspace and update your Simulink

model.

E!rsZEZsrm:

File Edit Wiew Simulabion Format Tools Help

=10l x|

R5E32
fzinboad
Setup

RS232 1

1 B
Constant
RS5232
fzinboard
Send/Rece e
R5232
oooao
L1 I
Signal
Henemtor

7 Double-click the RS-232 Setup block. Enter values to configure the COM1

port on the target PC.

For example, if the target PC is connected to COM1, and serial

communication 1s set to 5760 baud, 8 data bits, and 1 stop bit, your Block

Parameter dialog box should look similar to the figure shown below.

Obsolete Drivers

Note If you are not using an initialization or termination structure, in the
Initialization Struct and Termination Struct boxes, enter the empty
matrix [].

E Block Parameters: R5232 il

—re232zetup [mask] [link]

R5-232
bl ainboard
Setup

—Parameters

Baud rate: | 57600

MHurnber of data I:uits:l a

MHurnber of stop I:uits:l 1

F'arit_l,l:l MHone

Ll L) L] L] L

Pratacal; I Maone

Send buffer size:
{1024

Recere buffer size:

{1024
Inihalization command structure:
[i

T ermination command stucture:;

[i

0k, Cancel Help Apply

3 Serial Communications Obsolete Drivers Support

For more information on entering the block parameters, see RS-232
Mainboard Setup (Obsolete). For the procedure to create the
initialization and termination structures, see “RS-232 MATLAB Structure
Reference (Obsolete)” on page 3-27.

8 Click OK. The Block Parameters dialog box closes.

9 Double-click the RS-232 Send/Receive block. The Block Parameters dialog
box opens.

10 From the Port list, select either COM1 or COM2. For this example, select
COM1. In the Message struct name box enter the name for the MATLAB
structure this block uses to send messages to the COM1 port. The name of
the message structure is not the name of the M-file, but the name of the
structure created with the M-file.

In the Sample Time box, enter the sample time or a multiple of the sample
time you entered in the Receive block.

Your Block Parameter dialog box should look similar to the figure shown
below.

—red32zendrec [mazk] [link]

F5-232
bl ainboard
Send/Feceive

—Parameters

Part: | COM1 [

bezsage stiuct name:
|R5232_Sknd_Receive

Sample time;
01

(] 4 Cancel Help Apply

3-10

Obsolete Drivers

For information on entering the block parameters, see RS-232 Mainboard
Send/Receive (Synchronous) (Obsolete). For the procedure to create
the send/receive structure, see “RS-232 MATLAB Structure Reference
(Obsolete)” on page 3-27.

11 Click OK. The Block Parameters dialog box closes.

Your next task is to create the MATLAB message structures that the RS-232
driver blocks use to sequence commands to the RS-232 device. See “Creating
RS-232 Message Structures (Synchronous)” on page 3-11.

Creating RS-232 Message Structures (Synchronous). RS-232 drivers
use MATLAB structures to send and receive messages and map the input
and output ports on the RS-232 driver blocks to the data written and read
from the RS-232 devices.

After you add an RS-232 Setup and RS-232 Send/Receive block to your
Simulink model, you can create the message structures to communicate with
the RS-232 devices. You need to create and load these structures into the
MATLAB workspace before you build your target application. The easiest way
to create these structures is using an M-file and loading that M-file into the
MATLAB workspace.

1 In the MATLAB Command Window, and from the File menu, point to
New, and then click M-file.

A MATLAB text editor window opens.

2 Enter the initialization, send/receive, and termination messages. Each
message 1s an element in a MATLAB structure array. For information and
examples of this structure, see “RS-232 MATLAB Structure Reference
(Obsolete)” on page 3-27.

For example, assume that you have an external RS-232 device with a

D/A module that requires a string in the format 'identifier, channel,
value;\n'. identifier is any string. channel is an integer value between
1 and 2, defining which D/A channel to update. value is a floating-point
value indicating the new voltage for the D/A output.

Additionally, when the external device receives a legal string, it accepts
the string as an input message and returns the message 'noerror;\n'.

3-11

3 Serial Communications Obsolete Drivers Support

This message is provided as a confirmation. As an example, you can type
the following.

Note Field names in the structures are case sensitive.

RS232_Send_Receive(
RS232_Send_Receive(
RS232_Send_Receive(
RS232_Send_Receive (
RS232_Send_Receive(

1) .SendData = 'da_1234,%d,%f,;\n';
1).InputPorts = [1 2];

1) .RecData = 'noerror\n';

1).

1).

Timeout 0.01;
EOM = 1;

3 From the File menu, click Save As. In the Save as file dialog box, enter
the name of the M-file script. For example, enter

RS232Sync_Messages.m

4 Close the text editing window.

5 In the MATLAB Command Window, type the name of the M-file you
created with the RS-232 structures. For example, type

RS232Sync_Messages

The MATLAB interface loads and runs the M-file to create the message
structures in the MATLAB workspace needed by the RS-232 driver blocks.

6 Open your Simulink model, or press Ctrl+D.

The Simulink software updates the RS-232 driver blocks with the
information from the structures. For example, it adds inputs and outputs
defined in the structures to the blocks.

7 Connect the input and output ports on the RS-232 driver blocks to other
blocks in your Simulink model.

3-12

Obsolete Drivers

Your model should look similar to the figure shown below.

il]

File Edit W%iew Simulation Format Tools Help

1

Gonstant
R5232 ——= 1 RS 232
hizinboad izinboand
Setup — 2 Send/Raceie
RSE23E 1 RS232
oooo
%
Signal
Genemtor

8 Set the PreLoadFcn for your Simulink model to load the message structures
when you open your model. For example, if you saved the message
structures in the M-file RS232Sync_messages, type

set_param(gcs, 'PreLoadFcn', 'RS232Sync_messages.m')

Note If you do not manually load the message structures before opening your
Simulink model, or have the message structures automatically loaded with
the model, the port connections to the RS-232 driver break.

Your next task is to build and run the target application. However, the
example above only illustrates how to set up the dialog entries when using
the Send & Receive block. Without an external RS-232 device to receive

the messages and return a reply 'no error\n', this model cannot run
successfully on your target PC. It will block and wait for a reply each time the
application sends a message.

3-13

3 Serial Communications Obsolete Drivers Support

3-14

RS-232 Asynchronous Mode (Obsolete)

Use asynchronous mode when you do not need a response before continuing
with other computations. You can achieve faster sample rates with
asynchronous mode because neither the Send nor Receive block waits for

a reply. As a result, the asynchronous mode blocks do not block as do the
synchronous mode blocks. The application updates the received outputs only
when the entire package of data is received from the external device. This
section includes the following topics:

® “Notes for RS-232 Asynchronous Mode” on page 3-14
¢ “Adding RS-232 Driver Blocks (Asynchronous)” on page 3-15
® “Creating RS-232 Message Structures (Asynchronous)” on page 3-22

¢ “Building and Running the Target Application (Asynchronous)” on page
3-25

Notes for RS-232 Asynchronous Mode. For the example in this section,
two asynchronous mode blocks illustrate how you can test RS-232 I/O on the
target PC in a simple loop-back test. This simple but effective test lets you
check that the RS-232 Send and RS-232 Receive blocks work correctly with
your system using minimal hardware.

In this loop-back test, you use the COM1 port for sending signals and the
COM2 port for receiving signals. A NULL modem serial cable connects COM1
to COM2 so that any messages sent from the target PC through COM1 are
received by COM2 on the same target PC.

Use a Sine Wave block as an input to an RS-232 Send block that you connect
to the COM1 port. Connect the COM2 port to an RS-232 Receive block. The
signal received from this block is then passed through a Gain block of -1.

In the asynchronous mode, data is sent without waiting for response data

to be received. The Send block completes execution immediately upon
completing the Send transfer. The Receive block completes execution upon
completing the Receive transfer or when no more data is ready to be retrieved.

For sending data in asynchronous mode, use the RS-232 Send block. This
block only has input lines for the data to be sent. For receiving data, you
must use the Receive block. This block only has output lines for the data

Obsolete Drivers

to be received. Outputs are updated only when the entire package of data
1s received from the external device.

Adding RS-232 Driver Blocks (Asynchronous). You add RS-232 driver
blocks to your Simulink model when you want to use the serial ports on the

target PC for I/0.

After you create a Simulink model, you can add xPC Target driver blocks and
define the initialization, send, receive, and termination message structures:

1 In the MATLAB Command Window, type

xpclib

The xPC Target driver block library opens.

3-15

3 Serial Communications Obsolete Drivers Support

2 Double-click the RS-232 group block.

A window with blocks for RS-232 drivers opens.

E!Lihrary::-:pclih,.-"RSZSZ ;IEIEI

File Edit “iew Format Help

Composite drivers

[E)
ASCI ASCIH RSZ3Z2
1 Encode LE L Decode Tp L State E: E)_ E}_ E)_ E}_
ASCH Encode ASCI Decode R5232 State

Quatech Mainboard Diamond Commtech

o

- t
FIFO L p FIFO oL Ascii Decodd

Read wurite W2 L
FIFO read FIF O write W2 el Decode
FIFD 1p g FIFD TP
Read HDRS - | Read BINARMS |
FIFO ASCH read FIFO bin read

[

Obsolete Obsalete W 1.0

Alternatively, you can access the xPC Target block library from the
Simulink Library Browser. In the Simulink window, and from the View
menu, click Show Library Browser. In the left pane, double-click xPC
Target, and then click RS-232.

3 Drag and drop two RS-232 Setup blocks to your Simulink model.
4 In the Library window, double-click the RS-232 Asynchronous mode group

block. The library window containing blocks for RS-232 Synchronous
communication opens.

3-16

Obsolete Drivers

Note This library contains two send and two receive blocks. The second
block is included for compatibility with xPC Target Version 1.0.

E!Lihrary: wpchib/R5232/Async

File Edit Wiew Formak

Help

=10l x|

RS 232 RS 232
fulzin boozud fulzvin boznd
Send R ive
RS232 RS232 1

%1.0 compatible

R5Z232 R5232
filzin boamd flain bosnd
Send R ive
Send Reoe e

Alternatively, you can access the xPC Target block library from the
Simulink Library Browser. In the Simulink window, and from the View

menu, click Show Library Browser. In the left pane, double-click xPC
Target, and then click RS-232.

5 Drag and drop the RS-232 Send and RS-232 Receive blocks into your

Simulink model.

6 Add a Signal Generator, Gain, and xPC Target Scope block.

3-17

3 Serial Communications Obsolete Drivers Support

3-18

Your model should look similar to the figure below. Note that you cannot
connect to the inputs on the RS-232 Send block and the outputs on the
RS-232 Receive block, because they are not defined or visible. The inputs
and outputs are defined in a MATLAB message structure, and visible only
after you load that structure into the MATLAB workspace and update
your Simulink model.

o

File Edit Wiew Simulation Format Tools Help

RS 232 RS 232
oooo R5E232
o0 niin hoam Ma\xgin boamd Ma;nboard
- Send =tup =tup
Signal
GensmEhor FEzas RS2a2 2 RSZ232 2
|
Ll
Tamet Scope
R5E3E 1d: 1
hzinboamd
Rz e
GEain Secopea (PG
RS232 1

7 Double-click the first RS-232 Setup block. Enter values to configure the

COM1 port on the target PC.

For example, if the COM1 and COM2 ports of the target are connected with
a RS-232 NULL modem cable, and you set serial communication to 57600
baud, 8 data bits, and 1 stop bit. Your Block Parameters dialog box should
look similar to the figure shown below.

Obsolete Drivers

Note If you are not using an initialization or termination structure, in the
Initialization Struct and Termination Struct boxes, enter the empty
matrix [].

—re232zetup [mask] [link]

F5-232
bl ainboard
Setup

—Parameters

Baud rate: I RTEOD

Humber of data bits: I a3

MHurnber of stop biks: I 1

Farity: I Maone

Ll Lel L] L] e

Frotocal; I MHane

Send buffer size:
{1024

Receive buffer size:
[1024

Initialization command structure:

i

T erminatioh command structune:;

i

ok Cancel Help Apply

For more information on entering the block parameters, see RS-232
Mainboard Setup (Obsolete). For the procedure to create the

3-19

3 Serial Communications Obsolete Drivers Support

3-20

initialization and termination structures, see “RS-232 MATLAB Structure
Reference (Obsolete)” on page 3-27.

8 Click OK. The Block Parameters dialog box closes.

9 Repeat the previous setup for the second RS-232 Setup block and the
COM2 port. Use the same Baudrate, Databits, Stopbits, Parity, and
Protocol that you entered in the first RS-232 Setup block.

10 Double-click the Send block. The Block Parameters dialog box opens.

11 From the Port list, select either COM1 or COM2. For this example, select
COM1. In the Message struct name box, enter the name for the MATLAB
structure this block uses to send messages to the COM1 port. In the box,
enter the sample time or a multiple of the sample time you entered in the
RS-232 Receive block.

Your Block Parameters dialog box should look similar to the figure shown
below.

—re232zend [maszk] [link]

F5-232
bl ainboard
Send

—Parameters

Part: | COM1 [

bezsage stiuct name:
|R5232_send

Sample time;
01

] 4 Cancel Help Apply

For information on entering the block parameters, see R5-232 Mainboard
Send (Asynchronous) (Obsolete). For the procedure to create the send

Obsolete Drivers

structure, see “RS-232 MATLAB Structure Reference (Obsolete)” on page
3-217.

12 Click OK. The Block Parameters dialog box closes.
13 Double-click the RS-232 Receive block.
14 The Block Parameters dialog box opens.

15 From the Port list, select either COM1 or COM2. For this example, select
COM2. In the Message Struct Name box, enter the name for the MATLAB
structure this block uses to receive messages from the COM2 port. In the
Sample Time box, enter the sample time or a multiple of the sample time
you entered in the RS-232 Send block.

Your Block Parameters dialog box should look similar to the figure shown
below.

—re23den [mazk] [link]

F5-232
bl ainboard
Receive

—Parameters

Part: | COMzZ =l
bezsage stiuct name:

|R5232_Receivd

Sample time;
01

(] 4 Cancel Help | Apply

For information on entering the block parameters, see R5-232 Mainboard
Receive (Asynchronous) (Obsolete). For the procedure to create the
send structure, see “RS-232 MATLAB Structure Reference (Obsolete)”

on page 3-27.

3-21

3 Serial Communications Obsolete Drivers Support

3-22

16 Click OK. The Block Parameters dialog box closes.

17 Double-click the Signal Generator block and enter parameters. For
example, from the Wave Form list, select sine. In the Amplitude and
Frequency boxes, enter 1. From the Units list, select Hertz. Click OK.

18 Double-click the Gain block and enter parameters. For example, in the
Gain box, enter -1. Click OK.

Your next task is to create the MATLAB message structures that the RS-232
driver blocks use to sequence commands to the RS-232 device. See “Creating
RS-232 Message Structures (Synchronous)” on page 3-11.

Creating RS-232 Message Structures (Asynchronous). RS-232 drivers
use MATLAB structures to send and receive messages and map the input and
output ports on the RS-232 driver blocks to the data written and read from
the RS-232 devices in synchronous mode.

After you add the RS-232 Setup, Asynchronous Send, and Asynchronous
Receive blocks to your Simulink model, you can create the message structures
to communicate with the RS-232 devices. You need to create and load

these structures into the MATLAB workspace before you build your target
application. The easiest way to create these structures is to use an M-file and
load that M-file into the MATLAB workspace. See xpcrs232vV2.mdl in the
xpcdemos directory for an example model. That example sends and receives
two floating-point numbers. In that example, both floating-point number
fields for SendData are filled from InputPorts 1 because only one input port
is specified. In the case of RecData, the first floating-point number field is
sent to OutputPorts 1, but the second floating-point number field is ignored
because only one output port is specified.

The following procedure describes how to create an RS-232 message structure
to send and receive one floating-point number:

1 In the MATLAB Command Window, and from the File menu, point to
New, and then click M-file.

A MATLAB text editor window opens.

2 Enter the initialization, send, receive, and termination messages. Each
message is an element in a MATLAB structure array with a series of

Obsolete Drivers

fields For information and examples of these fields, see “RS-232 MATLAB
Structure Reference (Obsolete)” on page 3-27.

For example, if you want to send and receive one floating-point number,
type the following. In this example, the floating-point number field

for SendData is filled from InputPorts 1. In the case of RecData, the
floating-point number field is sent to OutputPorts 1.

Note Field names in the structures are case sensitive.

RS232_Send(1).SendData = 'start,%f,%f,stop;\r';
RS232_Send(1).InputPorts = [1];
RS232_Send(1).Timeout = 0.01;

RS232_Send(1).EOM = 1;

RS232_Receive (1) .RecData = 'start,%f,%f,stop;\r';
RS232_Receive(1). OutputPorts = [1];
RS232_Receive(1).Timeout = 0.01;
RS232_Receive(1).EOM = 1;

—_~ o~~~

Note If you do not manually load the message structures before opening
your Simulink model, or have the message structures automatically loaded
with the model, the port connections to the RS-232 blocks break.

If you want to send more than one variable, for example three, in a single
frame, use the following RS232_Receive (1) .0utputPorts line. This line
sends the first %f data to output port 1, the second %f to output port 2,
and the third %f to output port 3.

RS232_Receive(1).OutputPorts = [1 2 3];

3 From the File menu, click Save As. In the Save As File dialog box, enter
the name of the M-file. For example, enter

RS232Async_Messages.m

4 Close the text editing window.

3-23

3 Serial Communications Obsolete Drivers Support

3-24

5 In the MATLAB Command Window, type the name of the M-file you
created with the RS-232 structures. For example, type

RS232Async_Messages

The MATLAB interface loads and runs the M-file to create the message
structures in the MATLAB workspace needed by the RS-232 driver blocks.

6 Open your Simulink model, or press Ctrl+D.

The Simulink interface updates the RS-232 driver blocks with the
information from the structures. For example, it adds the inputs and
outputs defined in the structures to the blocks.

7 Connect the input and output ports on the RS-232 driver blocks to other
blocks in your Simulink model.

Your model should look similar to the figure shown below.

=

File Edit Wiew Simulation Format Tools Help

oooo Rz 232 RS2z R= 232
[2e3 P 1 hizinboard fulzin boznd fdzinboard
Send Setup Setup
Signal
GHenembor R5232 RSE3z 2 R5232 3
RSaE Ta'g?;:ﬁmpe
Mzinbozard 1
Rece vz
Gain Scopa PG
RS232 1

8 Set the preload function for your Simulink model to load the message
structures when you open the model. For example, if you saved the message
structures in the M-file RS232async_messages, type

Obsolete Drivers

set_param(gcs, 'PreLoadFcn', 'RS232async_messages')

Note If you do not manually load the message structures before opening your
Simulink model, or have the message structures automatically loaded with
the model, the port connections to the RS-232 blocks break.

Your next task is to build and run the target application.

Building and Running the Target Application (Asynchronous). The
xPC Target and Real-Time Workshop software create C code from your
Simulink model. You can then use a C compiler to create executable code
that runs on the target PC.

After you have added the RS-232 blocks for asynchronous mode to your
Simulink model, and created and loaded the RS-232 structures into the
MATLAB workspace, you can build your target application.

Note You cannot use a serial port to communicate between the host PC and
target PC with this example. You can only use COM1 if it is not already in
use for host-target communications.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Build Model.

2 In the MATLAB Command Window, type

+tg or tg.start or start(tg)

The target application begins running in real time.

For each sample period, the RS-232 messages you entered in the RS-232
send and receive message structures are executed.

3-25

3 Serial Communications Obsolete Drivers Support

3-26

In this example, the target PC displays the inverted waveform. The RS-232
Send and RS-232 Receive blocks require a minimum delay or one sample
to send the data and also receive it. When running at faster sample rates,
several sample intervals might elapse while one set of data is transmitted,
because RS-232 communication is not particularly fast. The sample delay
just described is not visible in this example.

-4 Real-Time xPC Target Spy | (O]]
Hpors232 Scope: 1, signal @ added
Z9MB Ecope: 1, signal 2 added
i Ecope! 1, trigger signal set to 2
RT, 1 "
t 31:3;3 Scope ! 1, triggexy level set to @.08080080
38@ 4 Scope: 1, TriggeyScope set to 1
Scope: 1, lower y—axis limit set to B.008000
.61 Ecope: 1, wpper y-axis limit set to B.088008
@.8081527 System: initializing application finished
31.58 = Sustem: execution started {(sample time: H.8188008)>
g 2

\ N/
N/ _/

\ / NIV

AR \
\

[N AR
/

You can extend this example for multiple D/A channels by simply adding
more input signals and modifying the format string to have additional '%f"

format specifiers.

Obsolete Drivers

Note This example requires that you not use host PC to target PC
communication using a serial port because that would block that COM port
and the example would not operate.

RS-232 Simulink Block Reference (Obsolete)

The xPC Target block library supports RS-232 communication with driver
blocks in your Simulink model and message structures in the MATLAB
workspace.

This section includes the following topics:

® RS-232 Mainboard Setup (Obsolete) — Sends the initialize and
termination messages. You need one Setup block for each RS-232 port
you use in your model.

® RS-232 Mainboard Send/Receive (Synchronous) (Obsolete) —
Sequences the send and receive messages for synchronous serial
communication.

® RS-232 Mainboard Send (Asynchronous) (Obsolete) — Sequences the
send messages.

® RS-232 Mainboard Receive (Asynchronous) (Obsolete) — Sequences
the receive messages.

RS-232 MATLAB Structure Reference (Obsolete)

You do not use all message fields in all messages. For example, a message
to send data would not use the message field.RecData, but would use the
field .SendData. However, knowing the possible message fields is helpful
when you are creating any of the message structures. This section contains
the following topics:

e “RS-232 Send/Receive Message Structure (Synchronous)” on page 3-28 —
Description of the message fields for the send/receive structure associated
with RS-232 asynchronous mode and the RS-232 Send/Receive block

3-27

3 Serial Communications Obsolete Drivers Support

e “RS-232 Send Message Structure (Asynchronous)” on page 3-29 —
Description of the message fields for the send structure associated with
RS-232 synchronous mode and the RS-232 Send block

e “RS-232 Receive Message Structure (Asynchronous)” on page 3-30 —
Description of the message fields for the receive structure associated with
RS-232 synchronous mode and the RS-232 Receive block

e “Supported Data Types for Message Fields” on page 3-31 — List of
supported data types and the format you use to indicate those types in
message fields

RS-232 Send/Receive Message Structure (Synchronous). Below are
descriptions of the possible message fields for the send/receive structures
with asynchronous mode. The order of the fields does not matter. However,
the field names are case sensitive.

Message Field Description
SendData Data and format sent to the RS-232 device. Default
value = '"'.

Note that the SendData syntax format is the same
as the C printf () library function. It is also very
similar to the MATLAB fscanf method, with the
exception that SendData is not vectorized.

InputPorts Number of input ports for the driver block. Data from
the input ports is sent to the RS-232 device with the
message field.SendData. Default value = []. The
highest number you enter determines the number of
input ports on the driver block

For example, the following message creates two input
ports on the driver block,

RS232_Send_Receive(1).InputPorts= [1 2];

3-28

Obsolete Drivers

Message Field Description
RecData Data and format received from the RS-232 device.
Default value = ' '. The format of this statement is

very similar to a scanf statement. The read data is
mapped to the output ports defined in the message
field .OutputPorts. If a negative output port is given,
the data is read in, but not sent to any output port.

OutputPorts Number of output ports from the driver block. Data
received from an RS-232 device is sent to the output
ports with the message field .RecData. Default value
= [1. The highest number you enter determines the
number of output ports on the driver block.

For example, to use output ports 1 and 2 on the driver
block, type

RS232_Send_Receive.OutputPorts = [1 2];

Timeout Time, in seconds, the driver block waits for data to be
returned. Default value = 0.049.

EOM Number of characters you use to indicate the end of
a message.

RS-232 Send Message Structure (Asynchronous). Below is a description
of the possible message fields for the send structure with synchronous mode.
The order of the message fields does not matter. However, the field names
are case sensitive.

Message Field Description
SendData Data and format sent to the RS-232 device. Default
value = '"'.

Note that the SendData syntax format is the same
as the C printf () library function. It is also very
similar to the MATLAB fscanf method, with the
exception that SendData is not vectorized.

3-29

3 Serial Communications Obsolete Drivers Support

Message Field Description

InputPorts Number of input ports for the driver block. Data from
the input ports is sent to the RS-232 device with the
message field .SendData. Default value = []. The
highest number you enter determines the number of
input ports on the driver block.

For example, the following message creates two input
ports on the driver block.

RS232_Send_Receive(1).InputPorts= [1 2];

Timeout Time, in seconds, the driver block waits for data to be
returned. Default value = 0.049.

EOM Number of characters you use to indicate the end of
a message.

RS-232 Receive Message Structure (Asynchronous). Below are
descriptions of the possible message fields for the receive message structure
with synchronous mode.

Message Fields Description
RecData Data and format received from the RS-232 device.
Default value = ' '. The format of this statement

is very similar to a scanf statement. The read
data is mapped to the output ports defined in the
message field .OutputPorts. If a negative output
port is given, the data is read in but not sent to any
output port.

3-30

Obsolete Drivers

Message Fields

Description

OutputPorts

Number of output ports from the driver block.
Data received from an RS-232 device is sent to
the output ports with the message field .RecData.
Default value = []. The highest number you enter
determines the number of output ports on the
driver block.

For example, to use output ports 1 and 2 on the
driver block,

RS232_Send_Receive.OutputPorts = [1 2];

Timeout

Time, in seconds, the driver block waits for data to
be returned. Default value = 0.049.

EOM

Number of characters you use to indicate the end

of a message.

Supported Data Types for Message Fields. The following table lists the
supported data types for the RS-232 message fields.

Format

Description

%Cc and %C

Single character

%d or %i

Signed decimal integer

Unsigned decimal integer

Unsigned octal integer

Unsigned hexadecimal integer using 'abcdef' or
'ABCDEF ' for the hexadecimal digits

Exponential format using e or E

Floating point

%0 Signed value printed in f or e format depending on
which 1s smaller
%G Signed value printed in f or E format depending on

which is smaller

3 Serial Communications Obsolete Drivers Support

3-32

RS-232 Binary Mode (Obsolete)

Use RS232 Binary mode when you want to transfer raw data. The format of
this data is either a custom format or is an image of the bytes as they are
stored in memory. This section includes the following topics:

® “RS-232 Binary Mode I/O” on page 3-32 — When to use RS-232 binary mode

® “RS-232 Binary Mode I/0” on page 3-32 — How to select drivers from the
xPC Target block library

® RS-232 Binary Receive (Obsolete) — Explanation of block parameters,
inputs, and outputs

® RS-232 Binary Send (Obsolete) — Explanation of block parameters
and input

¢ “Example Using RS-232 Binary Mode I/O” on page 3-34 -— Simulink model
using xPC Target driver blocks

RS-232 Binary Mode 1/0. The binary mode drivers operate in asynchronous
mode. In other words, they do not wait until an entire packet of data is
received, but receive as many bytes as available and then go on to the next
data block. When an entire packet has been received, the block outputs the
new data. Sent data is also handled similarly. The Send block instructs the
RS-232 hardware to send a certain number of bytes, but does not wait for
these bytes to actually be sent.

The RS-232 binary mode infrastructure also includes blocks to pack and
unpack any data received. This translates the raw bytes into signals that the
Simulink software can understand.

The functioning of these blocks is identical to the corresponding blocks in the
UDP section of the xPC Target block library. The RS232 Binary Pack and

Unpack blocks are actually references to these blocks. For information about
UDP and the functionality of these blocks, see Chapter 9, “UDP I/O Support”.

Using RS-232 Binary Mode. To use the RS-232 binary mode blocks, you
must first insert exactly one RS232 Setup block for each COM port into your
model. The setup for this block is exactly the same as it is for text-based I/0,
except that initialization or termination structures are ignored. In the dialog
box, set both these fields to the empty matrix ([]).

Obsolete Drivers

The RS-232 binary mode blocks can be found in the RS-232 section of the xPC
Target Block Library. Use the following procedure to access these blocks:

1 In the MATLAB Command Window, type
xpclib

The xPC Target Block Library opens.
2 Double-click the group block RS232.

The Library: xpclib/RS232 library opens.

E!Lihrarf::-:pclih,.-"RSZSZ ;IEIEI

File Edit “iew Format Help

Composite drivers

£} 2
ASCH ASCH R5232
1 D &l 1 D u]
Encode | Decode | State Pi E)_ E}_ i}_ E_
ASCH Encode ASCH Decode REZ2322 State
t Quatech Mainboard Diamond Commtech
FIFO L FIFO Ascii Decod F
Read wurite W2 L
FIFO read FIF O wurite W mscii Decode
Fro TR FIFo TF
Read HDRE o | Read BINARYS
FIFO ASCI read FIFO bin read

[

Obzolete Obsolets W 1.0

3 Double-click the group block Binary Mode.

The Library: xpclib/RS232/Binary Mode library opens.

3-33

3 Serial Communications Obsolete Drivers Support

3-34

E! Library: xpclib/RS232 /Binary Mod — |I:| |£|
File Edit W“iew Formatb Help

Length Done B
RS232 Receive R3232 Send
SO oM
Enablke Data B
R5232 R5232
Binary Receie Binary Send
Pack Unpack o
Pack Lnpack

4 Drag and drop any of these blocks into your Simulink model.

Example Using RS-232 Binary Mode 1/0O. To show the flexibility provided
by the RS232 Binary Receive block, the following illustrates how this block
can be used. The model that implements this setup is provided with the xPC
Target product. To access this model, type

xpcrs232bindemo

at the command prompt. This opens the model, which is essentially
self-documenting. Open each subsystem in the model to see what that part is
supposed to accomplish.

Here is an example of a messaging protocol that the model has to conform to.

The protocol consists of a one-byte header, followed by a variable-length body.
The header can have only two legal values, 12 and 17. If the header is 12, the
body is 6 bytes long, and consists of a uint16 followed by an int32 (in terms
of MATLAB data types). If the header is 17, the body is 4 bytes long, and
consists of a uint16 followed by an int16.

Obsolete Drivers

The model receives one header byte at a time, rejecting any invalid ones.
As soon as a valid header byte is received, the execution switches to the
body block, where the proper number of bytes is received. The data is then
appropriately decoded and displayed on an xPC Target Scope of type target.
The model should serve as an example of how this is done.

The basic algorithm is to receive a header byte and then compare it to the list
of known headers (12 and 17). The body length is set appropriately depending
on the header, and the “Done” function-call output of the header block is
used to trigger functioning of the body block (via the “distributor” function
call subsystem).

3-35

3 Serial Communications Obsolete Drivers Support

Boards and Blocks — Alphabetical List

RS-232 Binary Pack (Obsolete)

RS-232 Binary Receive (Obsolete)

RS-232 Binary Send (Obsolete)

RS-232 Binary Unpack Block (Obsolete)

RS-232 Mainboard Receive (Asynchronous) (Obsolete)
RS-232 Mainboard Send (Asynchronous) (Obsolete)
RS-232 Mainboard Send/Receive (Synchronous) (Obsolete)
RS-232 Mainboard Setup (Obsolete)

3-36

RS-232 Binary Pack (Obsolete)
|

Purpose RS-232 Binary Pack block
Librclry xPC Target Library for RS232

Description Same as UDP Pack block. See UDP Pack.

3-37

RS-232 Binary Receive (Obsolete)

3-38

Purpose
Library

Description

RS-232 Binary Receive block
xPC Target Library for RS232

The RS232 Binary Receive Block was designed with generality in mind.
To this end, it supports reception of variable-length packets. A packet
can be split between two different RS232 Binary Receive blocks, say for
a fixed-length header followed by a variable-length body. However, the
maximum possible length of a packet has to be specified in the block,
and the output from the block is a vector whose width is equal to this
maximum length.

The RS232 Binary Receive Block has two input ports:

¢ First input port — This port is labeled Length, and is the size of
the packet it will receive. This value should be less than or equal
to the Maximum width per packet length parameter. The effect
of changing the Length input during reception of one packet is
undefined.

¢ Second input port — This port is labeled Enable, and turns the
block on or off. If the Enable input is nonzero, the block attempts to
receive data, otherwise it simply does nothing.

The RS232 Binary Receive block has two output ports:

¢ First output port — This port is labeled Done, and is a function
call output. This output issues a function call as soon as the block
has completed receiving one packet. This can be used to drive a
function call subsystem to switch. For example, to switch from a
“header-receive” block to a “body-receive” block.

¢ Second output port — This port is labeled Data, and is the data
output port. The data is a vector of uint8s, and is a vector of width
equal to that specified in the Maximum width per packet parameter.
If the Length input is less than this width, the first number of bytes
equal to Length are the real data and the rest is garbage.

RS-232 Binary Receive (Obsolete)

If you drop a block into your model and double-click it, a Block
Parameters dialog box opens where you can modify the parameters for
this block.

E! Function Block Parameters: R5232 Binary Receive il
—re232brec [mazk] [link]

R5232 Binary receive
B ackward compatible for old models
Mot for use in new models

—Parameters

COM part;

b axirnurm width per packet:
[1

Sample time:
[
0k, Cancel Help Apply
Block COM Port
Parameters From the list, select COM1, COM2, COM3, or COM4. This is the RS-232

port you want to receive data from. An RS232 Setup block must
also exist for the same COM port in your model.

Maximum width per packet
Enter a value that the Simulink and Real-Time Workshop
software use to allocate memory for the received data. This is also
the width of the data output. In case the actual data is less wide
than the maximum, the first few bytes of the output vector are the
real data and the remaining bytes are undefined.

3-39

RS-232 Binary Receive (Obsolete)

Sample time
Specifies how often the block is to be executed. In the example
dialog box shown above, the setting of -1 specifies an inherited
sample time, either from the base sample time of the model or
from the block that the output of this block goes to.

3-40

RS-232 Binary Send (Obsolete)

Purpose RS-232 Binary Send block

I.ibrclry xPC Target Library for RS232

Description If you drop a block into your model and double-click it, a Block
Parameters dialog box opens where you can modify the parameters for
this block.

This block has one input port. This port represents the data to be
transmitted. The data should be a vector of type uint8 and of a packet
width specified in the Maximum width per packet parameter.

m Sink Block Parameters: R5232 Binary Send x|

—re232bzend [maszk] [link]

RS5232 Binary zend
B ackward compatible far ald modelz
Mot for use in new models

—Parameters

COM part;

b axirnurm width per packet:
[1

Sample time:
[
0k, Cancel Help Apply
Block COM Port
Parameters From the list, select COM1, COM2, COM3, or COM4. This is the port

you want to use to send the data.

3-41

RS-232 Binary Send (Obsolete)

Maximum width per packet
Enter the width of the incoming data. This value is a constant,
unlike the Receive block.

Sample time
Enter the frequency this data is sent.

3-42

RS-232 Binary Unpack Block (Obsolete)
|

Purpose RS-232 Binary Unpack Block
Librclry xPC Target Library for RS232

Description Same as UDP Unpack block. See UDP Unpack.

3-43

RS-232 Mainboard Receive (Asynchronous) (Obsolete)

Purpose RS-232 Mainboard Receive block (Asynchronous)

Librclry xPC Target Library for RS232

Block Port

Parameters This list allows you to define which COM port is used to send and

receive data. The model must contain one RS232 Setup block for
the same COM port. Otherwise, an error message is displayed.

Message struct name
Enter the name of the MATLAB structure this block uses
to receive messages and data from an RS-232 device. For
information on creating this structure, see “Creating RS-232
Message Structures (Asynchronous)” on page 3-22.

Sample time
This entry allows you to define the sample time of the block.
Because the block does not wait until data is received from the
external RS-232 device, you can set sample times to small values.

3-44

RS-232 Mainboard Send (Asynchronous) (Obsolete)

Purpose
Library

Block
Parameters

RS-232 Mainboard Send block (Asynchronous)
xPC Target Library for RS232

Port
This list allows you to define which COM port is used for sending
data. The model must contain one RS232 Setup block to configure
its COM port. Otherwise, an error message is displayed.

Message struct name
Enter the name of the MATLAB structure this block uses to send
messages and data to an RS-232 device. For information on
creating this structure, see “Creating RS-232 Message Structures
(Asynchronous)” on page 3-22.

Sample time
This entry allows you to define the sample time of the block.
Because the block does not wait until data is received from the
external RS-232 device, you can set sample times to small values.

3-45

RS-232 Mainboard Send/Receive (Synchronous)
(Obsolete)

3-46

Purpose
Library

Block
Parameters

RS-232 Mainboard Send/Receive Block (Synchronous)
xPC Target Library for RS232

Port
From the list, select COM1, COM2, COM3, or COM4. This list allows
you to define which COM port is used to send and receive the
data. The model must contain one Setup block for each COM port
you use to send and receive data. Otherwise, an error message

is displayed. Note that data is sent and received on the same
COM port.

Message struct name
Enter the name of the MATLAB structure this block uses to
send and receive messages and data to an RS-232 device. For
information to create this structure, see “Creating RS-232
Message Structures (Synchronous)” on page 3-11.

Sample time
This entry allows you to define the sample time of the block.
Because this block waits for data to be received from the RS-232
external device before the block finishes executing, small sample
times are not suitable with synchronous mode. You must allow
sufficient time for both the RS232 send and the RS232 receive
operations to be completed. The smallest sample time depends on
the following:

¢ Amount of data being sent

¢ Amount of data being received

Selected baud rate

® Response time of the external device

RS-232 Mainboard Setup (Obsolete)

Purpose
Library

Description

Block
Parameters

RS-232 Mainboard Setup block
xPC Target Library for RS232

The RS232 Setup block defines the number of databits, baudrate,
protocol, and so on for each COM port used in your Simulink model.
Each model that uses RS232 I/O must have one RS232 Setup block for
each COM port in the model. The RS232 Setup block does not have
any inputs or outputs.

If your host PC and target PC are connected using serial communication,
one COM port on your target PC is dedicated for communication with
your host PC. You cannot use this COM port in your block diagram as an
I/0 device. For example, if the target PC uses COM1 for communication
with the host PC, COM1 cannot be used by your block diagram. An
error message is displayed if you use COM1 as an I/O device in your
block diagram. The error message appears when you attempt to build
and download the target application. In this example, you must use
COM2 as an I/O device in your block diagram. If you are using TCP/IP
as your host PC to target PC communications protocol, then you can use
any COM ports with RS-232 I/O drivers in your block diagram.

Port
From the list, select COM1, COM2, COM3, or COM4. This is the serial
connection the target PC uses to communicate with the RS-232
device.

Baud rate
From the list, select 115200, 57600, 38400, 19200, 9600, 4800,
2400, 1200, 300, or 110.

Number of data bits
From the list, select either 7 or 8.

Number of stop bits
From the list, select 1 or2.

Parity
From the list, select None, 0dd, or Even.

3-47

RS-232 Mainboard Setup (Obsolete)

Protocol
From the list, select None or XOnXOff. If your serial device
does not support hardware handshaking, or your application
software requires XOn/XOff handshaking, you might need to select
XOn/XOff.

Send buffer size
Enter the size, in bytes, of the send buffer.

Receive buffer size
Enter the size, in bytes, of the receive buffer.

The Send Buffer Size and Receive Buffer Size must be large
enough to hold the data to be sent or received during each model
step. It is important to be aware that the buffers must also be
large enough to store old data from a prior model step in the event
that the entire data transmission was not completed during the
prior step.

Initialization command structure
Enter the name of the structure containing the initialization
messages and the expected acknowledgments when the model is
initialized. If you are not using initialization messages, enter an
empty matrix in this box.

For information on creating this structure, see “Creating RS-232
Message Structures (Synchronous)” on page 3-11 and “Creating
RS-232 Message Structures (Asynchronous)” on page 3-22.

Termination command structure
Enter the name of the structure containing the termination
messages and expected acknowledgments when the model is
terminated. If you are not using termination messages, enter an
empty matrix in this box.

3-48

GPIB I/0 Support

® “GPIB Drivers” on page 4-2

¢ “Using GPIB Drivers” on page 4-5

¢ “GPIB MATLAB Structure Reference” on page 4-13

¢ “Boards and Blocks — Alphabetical List” on page 4-20

4 cre I/O Support

GPIB Drivers

4-2

In this section...

“Introduction” on page 4-2

“Hardware Connections for GPIB” on page 4-2
“Simulink Blocks for GPIB” on page 4-3

“MATLAB Message Structures for GPIB” on page 4-3

Introduction

The xPC Target software interfaces the target PC to a GPIB instrument bus
using an external GPIB controller from National Instruments. This external
controller is connected to the target PC with a serial cable.

The xPC Target software uses a model for I/O that includes both Simulink
blocks, for the I/0 drivers, and MATLAB structures for sequencing messages
and commands. This model provides increased flexibility and control over
using only Simulink blocks in your model.

Hardware Connections for GPIB

The xPC Target software supports connecting to a GPIB instrument bus with
a GPIB-232CT-A controller from National Instruments.

One end of the controller is connected to either the COM1 or COM2 port on

the target PC with a null modem cable. The other end is connected to the
GPIB instrument bus with a standard GPIB connector and cable.

Target PC

GPIB-232CT-A
RE-2324 [EEE 488 Contrller

000 GPIB

instrurnent
bus

GPIB Device

GPIB Drivers

Simulink Blocks for GPIB

To support the use of GPIB, the xPC Target I/O library includes a set of GPIB
driver blocks. These driver blocks can be added to your Simulink model to
provide inputs and outputs to devices on a GPIB instrument bus.

¢ GPIB Setup — One setup block is needed for each GPIB controller. The
setup block does not have any inputs or outputs, but sends the initialization
and termination messages.

® GPIB Send/Receive — The send/receive block has inputs and outputs from
your Simulink model, and sequences both the send and receive messages.

MATLAB Message Structures for GPIB

Communication is through a series of messages passed back and forth
between the target PC and the GPIB controller. To accomplish this, the
messages sent to the GPIB controller must be in a format that the controller
understands. Likewise, the target PC must know how to interpret the data
returned from the GPIB controller.

xPC Target uses MATLAB structures to create messages and map the input
and output ports on the GPIB driver blocks to the data written and read
from the GPIB devices. The GPIB Setup block executes the messages in the
initialization structure after downloading the target application. The GPIB
Send/Receive block repeats the execution of the messages in the send/receive
structure during each sample interval. When the target application stops
running, the GPIB Setup block executes the messages in the termination
structure.

4 cre I/O Support

4-4

Below 1s an example of a send/receive message structure. The first message
writes a command to instruct the GPIB device to acquire a single data value,
while the second message sends a command to read that value and output the
result to the output port line coming from a GPIB driver block.

GPIB_STnd_Rﬂcelve

GPIB_E end_Recelve(l) GPIB_ Jen d Receive(l)..GFIB_ A]en d_Receive(n)

Address -1 6 Address

LCommand “wrt’ Command 4rd 16"
SendData-*:r=ad?’ SepdDara-

InputP orts JInputPorts

JRecData RecDarta-*%£"

Rdlength RdTength 20

OurputPorts JOoutputForts [1]
LOutputDataTypes .CutputDataTypes { double }
JWait JWait

Timeoutr 9 .05 Timeoutd 05

Currently, only two limitations exist. The xPC Target software does not
support string data types as input and output data types. Also, you must
know the size and order of data returned from a read command.

For more information on this example, see “Creating GPIB Message
Structures” on page 4-10.

Using GPIB Drivers

Using GPIB Drivers

In this section...

“Introduction” on page 4-5
“Adding GPIB Driver Blocks” on page 4-5
“Creating GPIB Message Structures” on page 4-10

Introduction

This section uses an example of a multimeter attached to a GPIB bus with an
address of 16. This multimeter needs the initialization command

:conf:volt:dc

to set the device to read DC voltages, and needs the command
:read?

during each sample interval to read one voltage value.

Adding GPIB Driver Blocks

The GPIB driver blocks initialize and communicate directly with the GPIB
controller. The GPIB controller then communicates with the GPIB devices on
the instrument bus.

After you create a Simulink model, you can add GPIB driver blocks and define
the initialization, send/receive, and termination message structures.

1 In the MATLAB Command Window, type
xpclib
The xPC Target driver block library opens.

2 Double-click the GPIB group block.

A manufacturers window opens. Currently xPC Target only supports GPIB
communication with a National Instruments controller.

4 cre I/O Support

4-6

3 Double-click the National Instruments group block.
A window with blocks for GPIB drivers opens.
E!Lihrarr: spcnilib @EI

RERNEE =Y Library: xpcnilib/GPIB -0 x|
File Edik “iew Format Help

1 GFPIBE232CT-A SFIB232CT-A
hational Instruments hational Insturments
WD Setup Send/Reaceive
GFIBE32CT-A GRPIBE32C5T-A 1

Alternatively, you could access the xPC Target block library from the
Simulink Library Browser. In the Simulink window, and from the View
menu, click Show Library Browser. In the left pane, double-click xPC
Target, double-click GPIB, and then click National Instruments.

4 Drag and drop a GPIB Setup block and a GPIB Send/Receive block to your
Simulink model.

Using GPIB Drivers

Your model should look similar to the figure below. Note that the input
and output ports are not defined or visible on the blocks. The inputs and
outputs are defined in a MATLAB message structure, and are visible only
after you load that structure into the MATLAB workspace and update

your Simulink model.

E!gpih_mndel

=100 x|

File Edit Miew Simulabtion Format Tools Help
GRIB2325T-A GRIBEZ3I2CT-A
hational Insturments Mational Instrurments
Setup Send/Receie
GPIBE32CT-A GRPIBE32C5T-A 1

5 Double-click the GPIB Setup block. Enter values that correspond to the
DIP switch settings you set on the GPIB-232CT-A controller. In the
Initialization Struct box, enter the name for the MATLAB structure this

block uses to send initialization messages to the GPIB device.

Note If you are not using an initialization or termination structure, enter

two single quotes.

4-7

4 GpPi 1/0O Support

For example, if the target PC is connected to COM1, and you set the
switches on the controller to 38400 baud, 8 data bits, and 1 stop bit, your
Block Parameter dialog box should look similar to the figure shown below.

) Block Parameters: GPIB-232CT-A d B

—red32zetup [maszk] [link]

GRIB-232CT A
M ational |nstruments
Setup

—Parameters

GPIB address:
o

Part: | COM1

Baud rate: I 38400

MHumber of data bits: I a

MHurnber of stop biks: I 1

Farity: I Maone

Ll Led L) L] L] e

Frotocal; I Maone

Send buffer size:
[1024

Receive buffer size:
[1024

Initialization command structure:
|GPIE_Initialize

T ermination command structure:;

i

ok LCancel Help Apply

Using GPIB Drivers

For more information on entering the block parameters, see National
Instruments PC-DIO-24. For the procedure to create the initialization
structure, see “Creating GPIB Message Structures” on page 4-10.

6 Click OK. The Block Parameters dialog box closes.

7 Double-click the GPIB Send/Receive block. The Block Parameters dialog
box opens.

8 From the Port list, select either COM1 or COM2. This is the port on the target
PC connected to the GPIB controller. In the Message Struct Name box,
enter the name for the MATLAB structure this block uses to send and
receive messages to the GPIB device. In the Sample Time box, enter
the same sample time or multiple of the sample time you entered for the
fixed step size in theSimulation > Configuration Parameters dialog
box Solver pane.

Your Block Parameter dialog box should look similar to the figure shown
below.

1 Block Parameters: GPIB-232CT-A 1 ed |

—red32zendrec [maszk] [link]

GFIB-232CT &
Matianal Instrumentz
Send/Feceive

—Parameters

Part: | COM1 [

tMeszage stucture;
|GPIE_Send_Receive

Sample time:
01

ok Cancel Help Apply

For more information on entering the block parameters, see National
Instruments PC-DIO-24.

4 cre I/O Support

9 Click OK. The Block Parameters dialog box closes.

Your next task is to create the MATLAB message structures that the GPIB
driver blocks use to sequence commands to the GPIB controller. See “Creating
GPIB Message Structures” on page 4-10.

Creating GPIB Message Structures

GPIB drivers use MATLAB structures to send and receive messages and to
map the input and output ports on the GPIB driver blocks to the data written
and read from the GPIB devices.

After you add GPIB driver blocks to your Simulink model, you can create the
message structures to communicate with the GPIB controller. You need to
create and load these structures into the MATLAB workspace before you
build your target application. The easiest way to create these structures is to
create an M-file and load that M-file into the MATLAB workspace.

1 In the MATLAB Command Window, and from the File menu, point to
New, and then click M-file.

A MATLAB text editor window opens.

2 Enter the initialization and send/receive messages. Each message is
an element in a MATLAB structure array with a series of fields. For
information and examples of these fields, see “GPIB Initialization and
Termination Message Structures” on page 4-13 and “GPIB Send/Receive
Message Structure” on page 4-14.

As an example, if you have a multimeter attached to a GPIB bus that has
an address of 16, needs the initialization command :conf:volt:dc to set
the device to read DC voltages, and uses the command :read? to read one
voltage value, you could type the following:

Note Field names in the structures are case sensitive.

GPIB _Initialize(1).Command = 'wrt 16';
GPIB _Initialize(1).SendData = ':conf:volt:dc';

4-10

Using GPIB Drivers

GPIB_Send_Receive(1
GPIB_Send_Receive(1
GPIB_Send_Receive(1
GPIB_Send_Receive(1

~—~ — ~— ~—

GPIB_Send_Receive(
GPIB_Send_Receive(
GPIB_Send_Receive(
GPIB_Send_Receive(
GPIB_Send_Receive(
GPIB_Send_Receive(

NV \C I \O R \C R \C I V]

Address= 16;

Command = 'wrt 16';
SendData = ':read?';
Timeout = 0.05;

.Command = 'rd 16';

.RecData = '%f';

.RdLength = 20;

.OQutputPorts = [1];
.OutputDataTypes = {'double'};
.Timeout = 0.15;

This example did not need a termination structure. But if it did, the format
of the structure is the same as the initialization structure. For example,
a termination structure could have a message with the .Command and

.SendData fields.

GPIB_Termination(1).Command
GPIB_Termination(1).SendData

3 From the File menu, click Save As. In the Save As File dialog box, enter
the name of the M-file. For example, enter

GPIB_Messages.m

4 Close the text editing window.

5 In the MATLAB Command Window, type the name of the M-file you
created with the GPIB structures. For example, type

GPIB_Messages

The MATLAB interface loads and runs the M-file to create the message
structures in the MATLAB workspace needed by the GPIB driver blocks.

6 Open your Simulink model, or press Ctrl+D.

The GPIB driver blocks are updated with the information from the
structures. For example, inputs and outputs defined in the structures are
now visible on the driver blocks.

4-11

4 cre I/O Support

4-12

Your model should look similar to the figure shown below.

=1 apib_maodel -0l x|

File Edit Miew Simulation Formak Tools Help

GFPIB232CT-A GFPIB-232CT-A
Mational Instruments hational Instrurments 1 |
Setup Send/Receaive

GPIBE232CT-A GRIBE32CT-A 1

7 Set the PreLoadFcn for your Simulink model to load the message structures
when you open the model. For example, if you saved the message structures
in the M-file GPIB_messages, type

set_param(gcs, 'PreLoadFcn','GPIB_messages.m')

Note If you do not manually load the message structures before opening
your Simulink model, or have the message structures automatically loaded
with the model, the port connections to the GPIB driver blocks break.

Your next task is to build the target application and download it to the target
PC.

GPIB MATLAB® Structure Reference

GPIB MATLAB Structure Reference

In this section...

“Introduction” on page 4-13
“GPIB Initialization and Termination Message Structures” on page 4-13
“GPIB Send/Receive Message Structure” on page 4-14

“Shortcuts and Features for Messages” on page 4-17

“Supported Data Types for Message Fields” on page 4-19

Introduction

You do not use all message fields in all messages. For example, a message to
send data would not use the message field .RecData, but would use the field
.SendData. However, knowing the possible message fields is helpful when
you are creating any of the message structures.

GPIB Initialization and Termination Message
Structures

The formats for the initialization and termination structures are similar to
the send/receive structure except for a few differences:

The initialization and termination structures do not need to receive or send
information through driver block ports on your Simulink model. Therefore,
the initialization and termination structures do not use the message fields

.InputPorts, .OutputPorts, .RecData, and .OutputDataTypes.

Below is a description of the possible message fields for the initialization and
termination structures. The order of the message fields does not matter.
However, the field names are case sensitive.

Message

Fields Description

Address Sets the GPIB address for the device being accessed and
defines the keyword ADDR. Default value = [].

4-13

4 cre I/O Support

4-14

Message

Fields Description

Command GPIB command sent to a GPIB device. Default value =

SendData Data sent with the GPIB command. Default value = "'".

RdLength Defines the length of the acknowledge string, in bytes,
from the GPIB controller.

Ack The expected acknowledgment string from the controller
as a result of an initialization or termination message. If
this value is set, you need to set the time-out value. If no
string is defined, then no acknowledge is expected.

Timeout Time, in seconds, allowed for the GPIB controller to

respond to a message and send back an acknowledge
string. Default value = 0.049 seconds.

If the time-out value is exceeded, a time-out error is
reported.

GPIB Send/Receive Message Structure

Below is a description of the possible fields for the send/receive message
structure. The order of the message fields in a message does not matter.
However, the field names are case sensitive.

GPIB MATLAB® Structure Reference

Message
Fields

Description

Address

Sets the GPIB address for the device being accessed.
After the GPIB address is set, the remaining messages
use this address value until another message changes the
address value. Default value = 0.

The keyword ADDR is equal to the value in the message
field .Address. You can use this keyword in the message
fields .Command or .SendData to replace the numerical
value of the GPIB address. For example, you can write

GPIB_Send_Receive(1).Command='wrt 16';

Or you can write

GPIB_Send_Receive(1).Address = 16;
GPIB_Send_Receive(1).Command="'wrt ADDR';

Command

GPIB command sent to a GPIB device. Default value =

SendData

Data sent with the GPIB command. Default value = "'".

InputPorts

Defines the input ports for the driver block. Data from the
input ports is sent to the GPIB device with the message
fields .Command and .SendData. Default value = []. The
highest number you enter determines the number of
input ports on the driver block.

For example, the following message creates two input
ports on the driver block, and passes data from the input
ports to the read command.

GPIB_Send_Receive(1).Command = 'rd #%d %d';
GPIB_Send_Receive(1).InputPorts= [1 2];

The first port is used to dynamically provide the length
of the receive string, while the second port provides the
value of the GPIB device.

4-15

4 cre I/O Support

Message
Fields

Description

RecData

Format of the data received from the GPIB device.
Default value = ' '. The format of this statement is very
similar to a scanf statement. The read data is mapped
to the output ports defined in the field .OutputPorts. If
a negative output port is given, the data is read in, but
not sent to any output port.

For example, to read from a GPIB device with an address
of 16, one floating-point number with a maximum number
of bytes of 20, and send the data to the first driver block
output, type the following:

GPIB_Send_Receive(1).Command ‘rd #20 16';
GPIB_Send_Receive(1).RecData = '%f';
GPIB_Send_Receive(1).OutputPorts = [1];

RdLength

Defines the length of the data, in bytes, received with
the read command and defines the keyword LENGTH.
Default value = 0.

QutputPorts

Defines the output ports from the driver block. Data
received from a GPIB device with the read command is
sent to the output ports. Default value = []. The highest
number you enter determines the number of output ports
on the driver block.

For example, to use output ports 1 and 2 on the driver
block, type

GPIB_Send_Receive.OutputPorts = [1 2];

OQutputData
Types

Defines the data types for the output ports on the driver
block. Default value = [].

If this value is not defined, and there are output ports,
the default type is double. Also, if there are more output
ports than output data types listed, the default type for
the undefined ports is double.

4-16

GPIB MATLAB® Structure Reference

Message

Fields Description

Wait The amount of time, in seconds, to wait before executing
the next message. This value is limited to 50 milliseconds.
Default value = 0.

Timeout Time, in seconds, the driver block waits for data to be
returned. Default value = 0.049.

Shortcuts and Features for Messages

xPC Target defines the abbreviations wrt and rd to make message writing
with GPIB commands easier. When the message interpreter sees the

statements

® Structure_name(index).'wrt', it is replaced with
Structure_name(index).'wrt ADDR'. For example, you could

write

GPIB_Initialize(1).Command = 'wrt 8';

or you could write

GPIB _Initialize(1).Address

8;

GPIB_Initialize(1).Command = ‘wrt';

The following message fields, with the keyword ADDR, use the address value

8 defined in the message field .Address.

® Structure_name (index).Command = 'rd', it is replaced with
Structure_name(index).Command = 'rd #LENGTH ADDR’. For example,

you could write

GPIB _Initialize(1).Command

‘rd #10 8';

or you could write

GPIB _Initialize(1).Address ;
GPIB_Initialize(1).RdLength = 10

8 .

GPIB_Initialize(1).Command = ‘wrt';

4-17

4 cre I/O Support

4-18

If you enter numerical values in the wrt and rd commands, then the
command uses those values instead of the values in the variables ADDR and
LENGH. For example, the following message uses the GPIB address 10 even
though the value for ADDR is defined as 8.

GPIB_Initialize(1).Address = 8;
GPIB_Initialize(1).Command ‘wrt 10';

Changes to the Read Command

When a GPIB rd command is sent to the GPIB controller, the controller
responds with the data and length of data. To make using this command
easier, the xPC Target driver block discards the length of data information.
For example, using the normal GPIB rd command, you could write

GPIB_Message(1).Command ‘rd #20 16';
GPIB_Message(1).RecData = '%f%d';
GPIB_Message(1).OutputPorts = [1 -1];

The code %d reads the length of data and the -1 discards the length. Using
the modified xPC Target rd command, you would write

GPIB_message(1).Command = 'rd #20 16';
GPIB_message(1).RecData = 'Sf';
GPIB_message(1).OutputPorts = [1];

Automatic Addition of Escape Characters

The message interpreter automatically places the correct escape characters
at the end of the message fields .Command, .SendData, and .Ack. However,
if you add the escape characters, then the message interpreter does not add
additional characters.

The escape characters are \\, \a, \b, \f, \r, \t, \v, \', \'', and \n.
For example, you can write
GPIB_Message.Command = 'wrt 16\n';

GPIB_Message.SendData = ':conf:volt:dc\r';
GPIB_Message.Ack = '10\n\r';

GPIB MATLAB® Structure Reference

or you can write the following, and the appropriate escape characters are

added.

GPIB_Message.Command = 'wrt 16';
GPIB_Message.SendData = ':conf:volt:dc';
GPIB_Message.Ack = '10';

Supported Data Types for Message Fields

The following table lists the supported data types for the message fields
.SendData and .RecData

Format

Description

%c and %C

Single character and wide character

%d or %I

Signed decimal integer

%Uu Unsigned decimal integer

%0 Unsigned octal integer

%X Or %X Unsigned hexadecimal integer using 'abcdef' or 'ABCDEF'
for the hexadecimal digits.

%e or %E Exponential format using e or E

%f Floating point

%0 Signed value printed in f or e format depending on which
is smaller

%G Signed value printed in f or E format depending on which

1s smaller

4-19

4 cre I/O Support

Boards and Blocks — Alphabetical List

4-20

GPIB Simulink Block
|

Board GPIB Simulink block
General The GPIB-232CT-A is a GPIB controller external to the target PC. It is
Descripticn connected to the target PC with an RS-232 cable.

xPC Target supports this controller with two driver blocks:

e GPIB-232CT-A Send/Receive Block
¢ GPIB-232CT-A Setup Block

Board .. Board name GPIB-232CT-A
Characteristics Manufacturer National Instruments
Bus type N/A
Access method RS232
Multiple block instance No
support
Multiple board support Yes

4-21

GPIB-232CT-A Send/Receive Block

4-22

Purpose
Library

Block
Parameters

GPIB-232CT-A Send/Receive Block
xPC Target Library for GPIB

Port
From the list, select COM1, COM2, COM3, or COM4. This is the serial
connection the target PC uses to send and receive data with the
GPIB-232CT-A controller.

Message structure
Enter the name of the MATLAB structure containing the
messages to be sent to the GPIB controller.

Sample time
Enter the base sample time or a multiple of the base
sample time you entered for the fixed step size in the
Simulation > Configuration Parameters dialog box Solver
pane.

GPIB-232CT-A Setup Block

Purpose
Library
Note

Block
Parameters

GPIB-232CT-A Setup block
xPC Target Library for GPIB

The setup block parameters must be set to match the jumper settings
on the GPIB-232CT-A controller.

GPIB address
Enter the identification number for the GPIB controller. When the
GPIB-232CT-A is turned on, the identification number is set to 0.

Port
From the list, select COM1, COM2, COM3, or COM4. This is the

serial connection the target PC uses to communicate with the
GPIB-232CT-A controller.

Baud rate
From the list, select 115200, 57600, 38400, 19200, 9600, 4800,
2400, 1200, 600, or 300.

Number of data bits
From the list, select 8 or 7.

Number of stop bits
From the list, select 1 or 2.

Parity
From the list, select None, Odd, or Even.

Protocol
From the list, select None or XOn/X0ff. If your serial device
does not support hardware handshaking, or your application
software requires XOn/XOff handshaking, you might need to
select XOn/XOff.

Send buffer size
Enter the buffer size in bytes.

Receive buffer size
Enter the buffer size in bytes.

4-23

GPIB-232CT-A Setup Block

Initialization command struct
Enter the name of the structure containing the initialization
information. For example, enter

GPIB_Initialize

If you are not using initialization messages, enter two single
quotes in this box. For information on creating this structure, see
“Creating GPIB Message Structures” on page 4-10.

Termination command struct
Enter the name of the structure containing the termination
information.

4-24

CAN I/0 Support

¢ “Introduction” on page 5-2

® “Model Execution Driven by CAN Messages (Interrupt Capability of CAN
Receive Blocks)” on page 5-6

¢ “Defining Initialization and Termination CAN Messages” on page 5-10
® “CAN-AC2 and CANopen Devices” on page 5-13

¢ “Constructing and Extracting CAN Data Frames” on page 5-14

® “Detecting Time-Outs When Receiving CAN Messages” on page 5-15

® “CAN Blocks for the CAN-AC2 (ISA) with Philips PCA 82C200 CAN
Controller” on page 5-16

e “CAN Blocks for the CAN-AC2 (ISA) with Intel 82527 CAN Controller”
on page 5-27

® “CAN Blocks for the CAN-AC2-PCI with Philips SJA1000 CAN Controller”
on page 5-38

® “CAN Blocks for the CAN-AC2-104 (PC/104) with Philips SJA1000 CAN
Controller” on page 5-51

5 can I/O Support

5-2

Introduction

In this section...

“xPC Target CAN Library” on page 5-2
“CAN-AC2” on page 5-4
“CAN-AC2-PCI” on page 5-4
“CAN-AC2-104” on page 5-5

xPC Target CAN Library

The xPC Target block library offers support to connect a target PC to a CAN
network using the CAN driver blocks provided by the xPC Target [/O CAN
block library. This support is for I/O device drivers for the CAN-AC2-ISA
and CAN-AC2-PCI boards from Softing® GmbH (Germany). The CAN driver
library allows xPC Target applications to connect to any CAN field bus
network for I/O communication or real-time target-to-target communication.

These drivers support CAN specifications 2.0A and 2.0B and use the dynamic
object mode of the CAN-AC2 firmware to achieve maximum real-time

performance.

The library supports the following CAN boards from Softing GmbH, Germany.

Multiple Board
Board Name | Form Factor | Identifier Range Support
CAN-AC2 ISA Standard (& Extended No
with piggyback module)
CAN-AC2-PCI | PCI Standard & Extended Yes (up to 3)
CAN-AC2-104 | PC/104 Standard & Extended Yes (up to 3)

For more information on the board specifications, visit
http://www.softing.com.

The xPC Target CAN library intentionally restricts its support to Softing
boards with two CAN ports (boards with one channel would be available as

http://www.softing.com

Introduction

well). This is because the two-port versions allow you to check the correct
functioning of the board and drivers by just connecting the first CAN port to
the second CAN port. This forms a loop-back without you needing to connect
the board to a “real” CAN-network. The xpcdemos directory contains simple
loop-back test models to test the ISA, PCI, and PC/104 boards. Type the
following commands to open the corresponding test models.

Model Name (Command) Board
xpccanpci CAN-AC2-PCI
xpccani04 CAN-AC2-104

The size of the driver code of the CAN boards supported by the xPC Target
block library is significant, and because not all xPC Target applications will
use CAN, the CAN library code is not linked by default when building a target
application. This makes target applications smaller if no CAN communication
functionality is needed. If the model to be built contains CAN driver blocks,
xPC Target links in the appropriate CAN library code when necessary.

For each CAN board three driver blocks are provided:

® A setup block, which defines the type of physical connection (baud rate
and so forth). Exactly one instance of the setup block must be defined in a
model for each physically installed CAN board.

¢ A send block, which transmits (sends) the data entering the block’s input
ports to the connected CAN network. One or more instances of the Send
block can be used in a model.

® A receive block, which retrieves (reads) CAN messages received by the
board and outputs the data at the corresponding output ports. One or more
instances of the Receive block can be used in a model.

The maximum size of the data frame of a CAN message is 8 bytes. This is the
same size as the C data type double uses on PC-compatible systems. At the
same time, the double data type is the default data type used for Simulink
signals. Therefore the CAN data frame within a Simulink model can be easily
represented by a scalar Simulink signal even if the data frame has nothing
in common with a double floating point value. The xPC Target CAN library
provides a Utility sublibrary that offers bit-packing and bit-unpacking blocks.

5-3

5 can I/O Support

5-4

These blocks are used to pack data types other than doubles into 64 bits (8
bytes or a double) as well as for the opposite operation. This is discussed in
greater detail below. What is important for now is that CAN data frames are
represented by Simulink signals of data type double.

All drivers for the supported CAN boards program the boards for the so-called
dynamic object mode. This is one of three modes the CAN board firmware
from Softing can operate in. For a more detailed discussion of the three
modes see the board’s user manual. Dynamic object mode is best suited for
real-time environments where each component of the application must have
deterministic time behavior. This is the case for the xPC Target product, and
that is the main reason why this mode has been chosen over the other two
modes, which are FIFO and static object mode.

The following paragraphs summarize the differences among the three
supported Softing boards.

CAN-AC2

This is the CAN board for the ISA bus offering two CAN ports (high-speed).
In its standard hardware configuration it uses the Philips PCA 82C200 CAN
controller, which supports standard identifiers only. Piggyback modules are
available (one for each port) that replace the Philips CAN controllers with
Intel® 82527 CAN controllers. The Intel controllers support both standard
and extended identifiers. The board is a memory-mapped device and uses

a 16 KB address range between 640 KB and 1 MB. We do not recommend
this board for new projects; use the CAN-AC2-PCI which is described below
instead. Softing plans no new firmware versions for this board.

CAN-AC2-PCI

This 1s the CAN board for the PCI bus offering two CAN ports. The CAN
controllers used on the board are the SJA1000 from Philips. In its standard
hardware configuration the board is designed for both standard and extended
1dentifiers for high-speed CAN. Piggyback modules are available (one for each
port) that add low-speed CAN support to switch between high-speed and
low-speed CAN. The board is a memory mapped PCI device that uses 64 KB
of address space. The address space is assigned automatically by the PCI
BIOS of the target PC and lies usually in the range between 2 GB and 4 GB.

Introduction

Any new projects where a desktop PC is used as the target system should use
this board and not the ISA board described above.

CAN-AC2-104

This is the CAN board for the PC/104 bus offering two CAN ports. The CAN
controllers used on the board are the SJA1000 from Philips. The board offers
both standard and extended identifiers for high-speed CAN. A low-speed
CAN hardware extension is not available. The board is both I/O mapped and
memory mapped. The I/O-mapped area uses a 3 B address range and the
memory-mapped area uses a 4 KB address range between 640 KB and 1 MB.

5-5

5 can I/O Support

Model Execution Driven by CAN Messages (Interrupt
Capability of CAN Receive Blocks)

In this section...

“Summary of Model Execution Driven by CAN Messages” on page 5-6
“CAN-AC2 (ISA)” on page 5-6

“CAN-AC2-PCI” on page 5-7

“CAN-AC2-104 (PC/104)” on page 5-8

Summary of Model Execution Driven by CAN
Messages

In certain applications, the model (target application) execution is driven by
the pace of an incoming CAN message. The standard behavior of the xPC
Target kernel is to drive the model (target application) in time monotonic
fashion (time interrupt). However, the driving interrupt can be replaced by
any other hardware interrupt. Because the three supported CAN boards
permit the firing of a hardware interrupt upon reception of a specific CAN
message, you can replace the timer interrupt line in the kernel by the
interrupt line assigned to a CAN board. This leads to a CAN-message-driven
execution of the target application.

To set this up, two independent steps are necessary:

1 Replace the timer interrupt line in the kernel setup with the board’s
hardware interrupt line.

2 Properly set up the CAN Setup and CAN Receive blocks.
Both steps are slightly different for each of the three supported CAN boards.

CAN-AC2 (ISA)

The CAN-AC2 is an ISA board, and the hardware interrupt line is set by
means of hardware jumpers on the board. Refer to the Softing user manual
for the board on how to set a certain interrupt line. Select an interrupt line

5-6

Model Execution Driven by CAN Messages (Interrupt Capability of CAN Receive Blocks)

that is not used by any other hardware device in the xPC Target system (for
example by the Ethernet card).

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box is displayed.
2 Click the Real-Time Workshop node.

3 Ensure that in the Target selection section, the System target file field
1s set to xpctarget.tlc.

4 Select the xPC Target options node.

5 In the Real-time interrupt source field, select the interrupt line number
that you have set using the jumpers on the board.

6 Click OK and save the model.

7 Open the dialog box of the CAN Receive block in the model that defines
the CAN message (identifier) to be used to fire the interrupt. Select the
Generate interrupts check box. Selecting this box declares all CAN
messages defined in this Receive block instance through their identifiers as
messages that fire an interrupt. In other words, it is not possible to define
a single CAN message within the set of defined identifiers to be the only
one to fire an interrupt. In most cases only the reception of one specific
message is used to drive the application execution. Therefore use at least
two instances of the Receive block. One to receive the CAN message that
drives the execution (Generate Interrupts selected) and the other for all
other normal CAN messages to be received (Generate Interrupts cleared).

CAN-AC2-PCI

The CAN-AC2 is a PCI board, and the hardware interrupt line is
automatically assigned by the PCI BIOS during the initialization of the target
system. Use the xPC Target function getxpcpci (see help getxpcpci) at
the MATLAB command prompt to query the target system for installed PCI
devices and the assigned resources. Write down the interrupt line number
assigned to the CAN-AC2-PCI board.

5 can I/O Support

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box is displayed.
2 Click the Real-Time Workshop node.

3 Ensure that in the Target selection section, the System target file field
1s set to xpctarget.tlc.

4 Select the xPC Target options node.

5 In the Real-time interrupt source field, select the interrupt line number
that you retrieved with the getxpcpci command.

6 Click OK and save the model.

7 Open the dialog box of the CAN Receive block in the model that defines
the CAN message (identifier) to be used to fire the interrupt. Select the
Generate interrupts check box. Selecting this box declares all CAN
messages defined in this Receive block instance through their identifiers as
messages that fire an interrupt. In other words, it is not possible to define
a single CAN message within the set of defined identifiers to be the only
one to fire an interrupt. In most cases only the reception of one specific
message is used to drive the application execution. Therefore use at least
two instances of the Receive block. One to receive the CAN message that
drives the execution (Generate Interrupts selected) and the other for all
other normal CAN messages to be received (Generate Interrupts cleared).

CAN-AC2-104 (PC/104)

The CAN-AC2-104 is an ISA board (PC/104), and the hardware interrupt line
is set by means of a software setting within the CAN Setup driver block. Note
a free interrupt line that is not used by any other hardware device in the xPC
Target system (for example by the Ethernet card).

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box is displayed.

2 Click the Real-Time Workshop node.

Model Execution Driven by CAN Messages (Interrupt Capability of CAN Receive Blocks)

3 Ensure that in the Target selection section, the System target file field
1s set to xpctarget.tlc.

4 Select the xPC Target options node.

5 In the Real-time interrupt source field, select the free interrupt line
number that you chose.

6 Click OK and save the model.

7 In the model open the dialog box of the CAN Setup block for the
CAN-AC2-104 board. Select the chosen interrupt line in the Interrupt
Line pop-up menu and close the dialog box. Open the dialog box of the
CAN Receive block in the model that defines the CAN message (identifier)
to be used to fire the interrupt. Select the Generate interrupts check box.
Selecting this box declares all CAN messages defined in this Receive block
instance through their identifiers as messages that fire an interrupt. In
other words, it is not possible to define a single CAN message within the set
of defined identifiers to be the only one to fire an interrupt. In most cases
only the reception of one specific message is used to drive the application
execution. Therefore use at least two instances of the Receive block. One to
receive the CAN message that drives the execution (Generate Interrupts
selected) and the other for all other normal CAN messages to be received
(Generate Interrupts cleared).

After you complete these two steps, you are ready to build the model. After
the downloading has succeeded and the target application execution has been
started, the execution is now driven by the selected CAN messages. The
execution time information displayed on the target screen is now directly
dependent on the reception of the corresponding message. If no message is
received the time does not advance. You should ensure that the corresponding
CAN message on the other CAN node is only generated if the xPC Target
application is running, otherwise unexpected interrupt messages might be
displayed on the target screen.

5-9

5 can I/O Support

Defining Initialization and Termination CAN Messages

5-10

In this section...

“Introducing Initialization and Termination CAN Messages” on page 5-10

“Example” on page 5-11

Introducing Initialization and Termination CAN
Messages

The CAN Setup driver blocks for all supported CAN boards allow the
definition of CAN messages to be sent during initialization and termination of
the target application (once at the beginning of each application run and once
before an application run is stopped). The main purpose for sending these
messages 1s to initialize or terminate other CAN nodes on the network. This
is the case, for example, for CANOpen or DeviceNet nodes. Even if there is
no direct support of those CAN application layers, communication with those
nodes can usually be done over standard CAN messages as long as the nodes
have been properly initialized. The initialization and termination fields of the
Setup blocks are intended for this purpose.

You define the initialization and termination CAN messages using MATLAB
struct arrays with CAN specific field names. This is the same concept as used

for the RS-232, GPIB, and general Counter driver blocks found in the xPC
Target 1/0O library. Refer to those driver blocks and their help for additional
information about this basic concept.

The CAN Setup block-specific field names are the following:

Port — Selects the CAN port over which the message is sent. Valid values
are either 1 or 2 (double).

Type — Defines whether the message to be sent is of type standard or
extended. Valid values are either 'Standard' or 'Extended' (strings).

Identifier — Defines the identifier of the message. The value (scalar) itself
must be in the corresponding identifier range (standard or extended).

Defining Initialization and Termination CAN Messages

Data — Defines the data frame to be sent out along with the CAN message.
The value must be a row vector of type double with a maximum length of 8.
Each element of the vector defines one byte, where the first element defines
the data for byte 0 and the eighth element the data for byte 7. Each element
can have a value between 0 and 255 (decimal). The data frame size is defined
by the length of the row vector.

Pause — Defines the amount of time in seconds the Setup block waits after
this message has been sent and before the next message defined in the struct
array is parsed and sent. Valid values are between 0 and 0.05 seconds. Some
CAN nodes need some time to settle before they can accept the next message,
especially when the message just received puts the node in a new operational
mode. Use this field to define those necessary idle times.

Example

Consider an A/D converter module with a CANOpen interface. After the node
1s powered up, the module is in preoperational mode, which is common for
CANOpen nodes. At least two initialization messages must be sent to the
node to make the module fully operational.

The first message puts the node from preoperational into operational mode.
The second message programs the module so that each time the converted
A/D value differs by more than 10 mV from the former conversion, a CAN
message 1s automatically sent, with the converted value as the data frame.

After the target application starts and the node is properly initialized, the
node automatically sends a CAN message, which the xPC Target application
receives and then processes.

Before the target application execution is actually stopped, the module (node)
must be returned to preoperational mode. You do this by sending out one
corresponding termination message.

The initialization and termination message struct for this example could
look as follows:

% put node into operational mode

init(1).port=1;
init(1).type='Standard";

5-11

5 can I/O Support

init(1).identifier=1536+11;
init(1).data=[hex2dec('22'),hex2dec('23"'),hex2dec('64"'),hex2dec
('00"),hex2dec('01')];

init(1).pause=0.02;

% program node to send CAN messages with converted A/D values
automatically

init(2).port=1;

init(2).type='Standard’;

init(2).identifier=0;

init(2).data=[hex2dec('01'),11];

init(2).pause=0;

% put node back into preoperational mode

term(1).port=1;
term(1).type='Standard"';

5-12

CAN-AC2 and CANopen Devices

CAN-AC2 and CANopen Devices

xPC Target CAN-AC2 supports CAN specification 2.0a and 2.0b but this does
not generally include the CANopen protocol on driver level. Nevertheless it
1s possible to access some CANopen devices by the CAN-AC2 drivers in a
general way.

CANopen knows two types of messages, i.e., SDO and PDO. SDOs are used
to set up or initialize a CANopen device for a certain behavior. PDOs are
messages that contain real-time data (i.e., converted A/D values from a analog
input device) and are CAN-type messages with no CANopen object, index,
and subindex information.

xPC Target applications that have to access CANopen devices over the
CAN-AC2 drivers transmit SDOs during the initialization phase and the
termination phase of the driver. PDOs are sent or received during the
simulation phase of the driver.

Because SDOs and PDOs are regular CAN-messages the CAN-AC2 drivers
have to provide a way to transmit SDOs during the initialization and
termination phase of the CAN-AC2 Setup block to initialize the different
CANopen devices in the network. To do this, provide proper Initialization and
termination command structures in the CAN-AC2 Setup block to describe the
SDO messages to send to set up and terminate the CANopen device.

5-13

5 can I/O Support

Constructing and Extracting CAN Data Frames

CAN data frames have a maximum size of 8 bytes (64 bits). For the CAN
driver blocks found in the xPC Target 1/0 block library, Simulink signals

of data type double are used to propagate data frames as an entity. But in
most applications the data frame content does not consist of 64-bit floating
point values; instead they are constructed from one or more smaller data type
entities such as signed and unsigned integers of various size.

To simplify the construction and extraction of data frames for the user,
the xPC Target I/O library contains two utility blocks (found in subgroup
CAN/Utilities) that allow bit-packing (construction) and bit-unpacking
(extraction) of data frames in a very flexible way.

[ZILibrary: zpclib/CaN/Utilities -0 x|
File Edit Wiew Formatb Help

0:15 o 15 B
] 1
CARN bit-packing CAM bit-unpacking

W

Timeout = 1

&l
CAN Tieout Detection

The main purpose of the two blocks is to be used in conjunction with CAN
Send and Receive driver blocks, but they can be used as well for other types of
data manipulation. Their functionality is entirely independent of any CAN
driver blocks or CAN library.

5-14

Detecting Time-Outs When Receiving CAN Messages

Detecting Time-Outs When Receiving CAN Messages

The Receive driver blocks for all CAN boards allow you to output the
timestamp at which the latest corresponding CAN message was received.
This information can be used to detect whether another CAN node is still
active and therefore is sending CAN messages or is no longer active and
special action must be taken. Assume that a CAN message is expected from
another CAN node every 2 milliseconds. If no new message is received within
10 milliseconds, the other CAN node is considered faulty, and the Simulink
model (target application) must proceed accordingly.

The CAN blockset in the xPC Target I/O block library provides a utility
block called CAN Timeout Detection. This is a simple graphical subsystem
(inspect it by looking under its mask) that uses the timestamp information
to calculate the time-out condition.

A Simulink model using this block in conjunction with a Receive block could
look as follows:

-ioi x|

File Edit ‘iew Simulation Format Tools Help

CAN-ACZ-PCI B1
CAN TS CAN 2
Standard £ Extended

Setup

Temninator
Cata frme
CAN-AGZ-FGCI B
CAN 1 - Feceive 156
Standad 11bit Tirnees ta Timaout = 0.01 p[0]
Rece e, Ts=0.002 Tirnout

SAN Timeout Detection

5-15

5 can I/O Support

CAN Blocks for the CAN-AC2 (ISA) with Philips PCA
82C200 CAN Controller

The driver blocks described here support the CAN-AC2 (ISA) without
piggyback modules. The Philips PCA 82C200 chip is used as the CAN
controller in this configuration and supports the standard identifier range
only. The driver block set for this board is found in the xPC Target I/O block
library in the group CAN/Softing.

E!Lihrary: xpclib/CAN,/Softing - |I:I|£|
File Edit “iew Format Help

e IS

CAM-ACE-154 CAN-ACE-ISA CAMN-ACZ-PCI GAM-ACE-104
P hilip= G200 Intel 527 SJA 1000 SJA 1000

The first group, Phillips C200, contains the three available CAN blocks:
Setup, Send, and Receive.

5-16

CAN Blocks for the CAN-AC2 (ISA) with Philips PCA 82C200 CAN Controller

[C1Library: pelibys -0 x|

File Edit Wiew Formab Help

CAN-ACE-ISA
CAN 1 CANZ
Standamrd

Setup

CAN-ACE-15A
u] CAM 1 -Send
Standamd 11bit

Send

CAM-ACE-15A
CANM 1 - Receine ap
Standard 11bit

Rece ive

5-17

Softing CAN-AC2-ISA with Philips PCA 82C200 Setup

5-18

Purpose
Library

Description

Softing CAN-AC2-ISA with Philips PCA 82C200 Setup block
xPC Target Library for CAN

The Setup block defines general settings of the installed CAN board.
Because the CAN driver blocks for this ISA board only support a single
physical board for each target system, this block can only be used once
(one instance) in a model.

—canac2izasetup [maszk] [link]

Softing
CAMN-AC2-SA
with Philipz PCA 820200

—Parameters

CaM 1 - baud rate; | SREEETS

CAMN 1 - uzer defined baud rate:

[[1.1.4.3]

CaM 2 - baud rate: | 1 MBaud LI

CAM 2 - uzer defined baud rate:
[[1.1.4.3]

Initislization command structure:
I

T ermninatior:

In
kemony baze addrezs [i.e. 0xd000): I 2 [16k]: D4000-DFFFF ;I

ok Cancel Help | Apply

Softing CAN-AC2-ISA with Philips PCA 82C200 Setup
|

Block CAN 1 - baud rate

Parameters Defines the most common baud rates for CAN port 1. If special
timing is necessary (baud rate), select the value User defined.
In this case, use CAN 1 - user defined baud rate to provide
the four values for the timing information. The vector elements
have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

CAN 2 - baud rate
Defines the most common baud rates for CAN port 2. If special
timing is necessary (baud rate), the value User defined can be
selected. In this case, use CAN 1 - User defined baud rate to
provide the four values for the timing information. The vector
elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

Initialization command structure
Defines CAN messages sent during initialization and termination
of the Setup block.

Termination
Defines CAN messages sent during termination of the Setup block.

Memory base address
Defines the memory base address of the board. Hardware
jumpers on the board itself set the address range that the board
uses. Refer to the Softing user manual on how to set the various
address ranges. The setting in the dialog box must correspond to
the jumper setting; otherwise the board cannot be accessed. The
available address ranges (memory base address) in the pop-up

5-19

Softing CAN-AC2-ISA with Philips PCA 82C200 Setup

5-20

menu are those supported by the board. Because the xPC Target
kernel only reserves a subrange (C8000 to D8000) of the 640 KB
to 1 MB address range for memory-mapped devices, the valid
settings when used within an xPC Target system are

1 (16k): D0000-D3FFF
2 (16k): D4000-D7FFF

The board allows you to terminate each of the two CAN ports
separately by means of hardware jumpers. Refer to the Softing
user manual on how to set the jumpers. Both CAN ports must be
terminated properly when you use the loop-back model provided
to test the board and drivers.

Softing CAN-AC2-ISA with Philips PCA 82C200 Send

Purpose Softing CAN-AC2-ISA with Philips PCA 82C200 Send block
Library xPC Target Library for CAN
Description The Send driver block transmits data to a CAN network from within

a block model.

E: Sink Block Parameters: Send il

—canac2izazend [mazk] [link]

Softing
CAMN-AC2-58
with Philips PCA 82C200

—Parameters

CaN port: | CAN 1 |
Identifiers:

[

Data frame sizes:

I[E

[T Show status output parks

Sample tirme:
{0001

ak. Cancel Help Spply

Block CAN port
Parameters Selects the CAN port to which the CAN message is sent.

Identifiers
Defines the identifiers of the CAN messages sent by this block. It

must be a row vector where the elements define a set of standard
identifiers. Each element must be in the range between 0 and

5-21

Softing CAN-AC2-ISA with Philips PCA 82C200 Send

5-22

2031. The number of identifiers for each CAN port in a model
per physical CAN board cannot exceed 200 (limitation of the
firmware’s dynamic object mode). The number of elements defined
here also specifies the number of input ports of the block. The
block icon displays the selected identifier at each input port. Each
input port accepts the data frame to be sent along with the CAN
message. The signal entering each input port must be a scalar of
type double representing the maximum size of 8 bytes of a CAN
message data frame.

Data frame sizes

Defines the data frame size for each identifier (CAN message) in
bytes. It must be a row vector in which the elements define a set
of data frame sizes. Each element must be in the range between
1 and 8. If the data frame sizes for all the identifiers defined in
the Identifiers parameter must be the same, you can provide the
size as a scalar only and scalar expansion applies. If the sizes
are different for at least two identifiers (CAN messages), you
must provide one size element for each identifier defined in the
Identifiers parameter. Therefore the length of the two vectors
must be the same.

Show status output ports

Enables status output ports for each identifier (CAN message). If
the check box is checked the block shows as many output ports
as input ports. The data type of each output port is a double
and the value is identical to the return argument of function
CANPC_write object(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Code| Description

0 Function successful.

Softing CAN-AC2-ISA with Philips PCA 82C200 Send

Code | Description

-1 Request overrun.

-4 Timeout firmware communication.

-99 Board not initialized.

Sample time
Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as
needed. For example, by using two instances of the block with different
sample times, you can send CAN messages out at different rates. Or
you can use multiple instances to structure your model more efficiently.

5-23

Softing CAN-AC2-ISA with Philips PCA 82C200 Receive

Purpose Softing CAN-AC2-ISA with Philips PCA 82C200 Receive block
I.ibrclry xPC Target library for CAN
Description The Receive driver block retrieves data from a CAN network to be used

within a block model.

E: Source Block Parameters: Receive il

—canaclizareceive [mask] [link]

Softing
CAMN-AC2-5A
with Philips PCA 82C200

—Parameters

CaN port: | CAN 1 |
| dentifiers:

J[0]

Output port options: I Drata j

[T Gernerate intemupts

Sample tirme:
{0001

k. Cancel Help

Block CAN port
Parameters Defines the CAN port from which the CAN messages are retrieved.

Identifiers
Defines the identifiers of the CAN messages retrieved by this

block. It must be a row vector in which the elements define a
set of standard identifiers. Each element must be in the range
between 0 and 2031. The number of identifiers for each CAN port

5-24

Softing CAN-AC2-ISA with Philips PCA 82C200 Receive

in a model per physical CAN board cannot exceed 200 (limitation
of the firmware’s dynamic object mode). The number of elements
defined here, also defines the number of output ports of the block.
The block icon displays the selected identifier at each output port.
Each output port outputs the data frame being retrieved along
with the CAN message. The signal leaving each output port is a
scalar of type double representing the maximum size of 8 bytes
of a CAN message data frame.

Output port options
Defines the type of retrieved data output at each output
port. Three different types of data can be output, data
frame, status, and timestamp. The status information is of
type double and is identical to the return value of function
CANPC_read_rcv_data(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Code| Description

0 No new data received.

1 Data frame received.

2 Remote frame received.

-1 Receive data frame overrun.
-2 Receive remote frame overrun.

-3 Object not active.

-7 Timeout firmware communication

-99 Board not initialized.

The timestamp information is of type double and outputs the
latest time at which a CAN message with the corresponding
identifier was received. This time information in seconds (with a
resolution of 1 microsecond) can be used to implement time-out
logic within your model.

5-25

Softing CAN-AC2-ISA with Philips PCA 82C200 Receive

The pop-up menu lets you select the output information output
at each output port of the block. If you select Data, each output
port signal is a scalar only. If you select Data - Status, each
output port signal is a vector with two elements in which the first
element contains the data frame and the second element the
status information. If you select Data - Status - Timestamp,
each output port signal is a vector with three elements in which
the first element contains the data frame, the second element the
status information, and the third element the timestamp.

Generate interrupts
Defines whether the CAN messages defined in this instance of the
block initiate an interrupt from the CAN board each time they are
received. If selected, you can use CAN messages to control model
(target application) execution.

Sample time
Defines the sample time at which the Receive block is executed
during a model (target application) run.

You can use as many instances of the Receive block in the model as
needed. For example, by using two instances of the block with different
sample times, you can retrieve CAN messages at different rates. Or you
can use multiple instances to structure your model more efficiently.

5-26

CAN Blocks for the CAN-AC2 (ISA) with Intel® 82527 CAN Controller

CAN Blocks for the CAN-AC2 (ISA) with Intel 82527 CAN
Controller

The driver blocks described here support the CAN-AC2 (ISA) with piggyback
modules. The Intel 82527 chip is used as the CAN controller in this
configuration and supports both standard and extended identifier ranges in
parallel. The driver block set for this board is found in the xPC Target I/0
block library in the group CAN/Softing.

E!Lihrary: xpclib/CAN,/Softing - | I:Ilﬁl

File Edit “iew Format Help

- NI

CAM-ACE-154 CAN-ACE-ISA CAMN-ACZ-PCI GAM-ACE-104
P hilip= G200 Intel 527 SJA 1000 SJA 1000

5-27

5 can I/O Support

The second block, CAN-AC2-ISA Intel527, contains the three available CAN
blocks: Setup, Send, and Receive.

[Z1Library: wpelibfos =101 x|

File Edit Wew Format Help

CAN-ACGE2-15A E
CAN 1 CAMEZ
Standard ! Extended

Setup

CAN-ACZISA
u} SAN T - Send
Standanrd 11bit

Send

CAM-ACE-154
CANM 1 - Receive op
Standamd 11bit

Receaive

5-28

Softing CAN-AC2-ISA with Intel 82527 Setup

Purpose Softing CAN-AC2-ISA with Intel 82527 Setup block
Library xPC Target library for CAN
Description The Setup block defines general settings of the installed CAN board.

Because the CAN driver blocks for this board only supports a single
physical board for each target system, this block can only be used once
(one instance) in a model.

—canac2izaszetup [maszk] [link]

Softing
CAMN-AC2-SA
with [ntel 82527

—Parameters

CaM 1 - baud rate:;
CAMN 1 - uzer defined baud rate:

[[1.1.4.3]

CaM 2 - baud rate: | 1 MBaud LI

CAM 2 - uzer defined baud rate:

[[1.1.4.3]

Initislization command structure:

I

T ermninatior:

I

kemony baze addrezs [i.e. 0xd000): I 2 [16k]: D4000-DFFFF ;I

ok Cancel Help | Apply |

5-29

Softing CAN-AC2-ISA with Intel 82527 Setup
|

Block CAN 1 - baud rate

Parameters Defines the most common baud rates for CAN port 1. If special
timing is necessary (baud rate), the value User defined can be
selected. In this case, use the CAN 1 - user-defined baud rate
parameter to provide the four values for the timing information.
The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

CAN 2 - baud rate
Defines the most common baud rates for CAN port 1. If special
timing is necessary (baud rate), the value User defined can be
selected. In this case, use CAN 1 - user-defined baud rate
parameter the four values for the timing information. The vector
elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

Initialization command structure
Define CAN messages sent during initialization and termination
of the Setup block.

Termination
Define CAN messages sent during termination of the Setup block.

Memory base address
Defines the memory base address of the board. The address range
used by the board must be set by hardware jumpers on the board
itself. Refer to the Softing user manual on how to set the various
address ranges. The setting in the dialog box must correspond to
the jumper setting; otherwise the board cannot be accessed. The
available address ranges (memory base address) in the pop-up

5-30

Softing CAN-AC2-ISA with Intel 82527 Setup

menu are those supported by the board. Because the xPC Target
kernel only reserves a subrange (C8000 to D8000) of the 640 KB
to 1 MB address range for memory-mapped devices, the valid
settings when used within a xPC Target system only are

1 (16k): DO0OOO-D3FFF
2 (16k): D4000-D7FFF

The board allows you to terminate each of the two CAN ports
separately by means of hardware jumpers. Refer to the Softing
user manual on how to set the jumpers. Both CAN ports must be
terminated properly when you use the loop-back model provided
to test the board and drivers.

5-31

Softing CAN-AC2-ISA with Intel 82527 Send

5-32

Purpose
Library

Description

Softing CAN-AC2-ISA with Intel 82527 Send block

xPC Target Library for CAN

The Send driver block transmits data to a CAN network from within

a block model.

E! Sink Block Parameters: Send

—canac2izaezend [mazk] [link]

Softing
CAMN-AC250
with [ntel 82527

—Parameters

CAN port:| CAN 1

CAM identifier range:l Standard [171-bit)

|dentifiers:

L] L

[

[rata frame zizes:

I[ET
[T Shaow status output parks

Sample time;

{0,001

OE.

Cancel

Help

Apply

Softing CAN-AC2-ISA with Intel 82527 Send
|

Block CAN port
Parameters Selects the CAN port to which the CAN message is sent.

CAN identifier range
Selects the identifier range of the CAN messages sent by this
block instance. If an application makes use of mixed standard and
extended identifier ranges, you must use at least two instances of
this block, each defining the corresponding identifier range.

Identifiers
Defines the identifiers of the CAN messages sent by this block.
It must be a row vector in which the elements define a set of
either standard or extended identifiers. Each element must be in
the range between 0 and 2031 for standard identifiers or 0 and

229-1 for extended identifiers. The number of identifiers for each
CAN port in a model per physical CAN board cannot exceed 200
(limitation of the firmware’s dynamic object mode). The number
of elements defined here also defines the number of input ports of
the block. The block icon displays the selected identifier at each
input port. Each input port accepts the data frame to be sent
along with the CAN message. The signal entering each input port
must be a scalar of type double representing the maximum size
of 8 bytes of a CAN message data frame.

Data frame sizes
Defines the data frame size for each identifier (CAN message) in
bytes. It must be a row vector where the elements define a set of
data frame sizes. Each element must be in the range between 1
and 8. If the data frame sizes for all identifiers defined in the
Identifiers parameter must be the same, you can provide the
size as a scalar only and scalar expansion applies. If the sizes
are different for at least two identifiers (CAN messages), you
can provide one size element for each identifier defined in the
Identifiers parameter. Therefore the length of the two vectors
must be the same.

Show status output ports
Enables status output ports for each identifier (CAN message). If
the check box is checked, the block shows as many output ports

5-33

Softing CAN-AC2-ISA with Intel 82527 Send

as input ports. The data type of each output port is a double
and the value is identical to the return argument of function
CANPC_write object(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Code| Description

0 Function successful.
-1 Request overrun.
-4 Timeout firmware communication.

-99 Board not initialized.

Sample time
Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as
needed. For example, by using two instances of the block, you can send
CAN messages at different sample times. Or you can use multiple
instances to structure your model more efficiently.

5-34

Softing CAN-AC2-ISA with Intel 82527 Receive

Purpose Softing CAN-AC2-ISA with Intel 82527 Receive block
Library xPC Target Library for CAN
Description The Receive driver block retrieves data from a CAN network to be used

within a block model.

E! Source Block Parameters: Receiy¥e

Softing
CAMN-AC2-50
with [ntel 82527

x|

—canaclizaereceive [maszk] [link]

—Parameters

CAN port: | CAN 1

| dentifiers:

CAM identifier range:l Standard [171-bit)

L] L

|1

Output port options: I Drata

[T Generate intermupts

Sample tirme:
f0.001
k. Cancel Help
Block CAN port
Parameters Selects the CAN port from which to retrieve the CAN messages.

CAN identifier range

Selects the identifier range of the CAN messages retrieved by this
block instance. If an application makes use of mixed standard and

5-35

Softing CAN-AC2-ISA with Intel 82527 Receive

5-36

extended identifier ranges, you must use at least two instances of
this block, each defining the corresponding identifier range.

Identifiers

Defines the identifiers of the CAN messages retrieved by this

block. It must be a row vector in which the elements define a set
of either standard or extended identifiers. Each element must be
in the range between 0 and 2031 for standard identifiers or 0 and

229 - 1 for extended identifiers. The number of identifiers for each
CAN port in a model per physical CAN board cannot exceed 200
(limitation of the firmware’s dynamic object mode). The number
of elements defined here also defines the number of output ports
of the block. The block icon displays the selected identifier at
each output port. Each output port outputs the data frame being
retrieved along with the CAN message. The signal leaving each
output port is a scalar of type double representing the maximum
size of 8 bytes of a CAN message data frame.

Output port options

Defines the type of retrieved data output at each output

port. Three different types of data can be output, data

frame, status, and timestamp. The status information is of

type double and is identical to the return value of function
CANPC_read_rcv_data(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Code| Description

0 No new data received.

1 Data frame received.

2 Remote frame received.

-1 Receive data frame overrun.
-2 Receive remote frame overrun.
-3 Object not active.

Softing CAN-AC2-ISA with Intel 82527 Receive

Code | Description

-7 Timeout firmware communication

-99 Board not initialized.

The timestamp information is of type double and outputs the
latest time at which a CAN message with the corresponding
identifier was received. This time information in seconds (with a
resolution of 1 microsecond) can be used to implement time-out
logic within your model.

The pop-up menu lets you select the output information output
at each output port of the block. If you select Data, each output
port signal is a scalar only. If you select Data - Status, each
output port signal is a vector with two elements in which the first
element contains the data frame and the second element the
status information. If you select Data - Status - Timestamp,
each output port signal is a vector with three elements in which
the first element contains the data frame, the second element the
status information, and the third element the timestamp.

Generate interrupts
Defines whether the CAN messages defined in this instance of the
block initiate an interrupt from the CAN board each time they are
received. If selected, you can use CAN messages to control model
(target application) execution.

Sample time
Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Receive block in the model
as needed. For example, by using two instances of the block, you
can send CAN messages at different sample times. Or you can use
multiple instances to structure your model more efficiently.

5-37

5 can I/O Support

5-38

CAN Blocks for the CAN-AC2-PCI with Philips SJA1000
CAN Controller

The driver blocks described here support the CAN-AC2-PCI. The Philips
SJA1000 chip is used as the CAN controller in this configuration and supports
both standard and extended identifier ranges in parallel. The driver block
set for this board is found in the xPC Target I/0 block library in the group
CAN/Softing.

E!Lihrary: xpclib/CAN,/Softing - |I:I|£|
File Edit “iew Format Help

o [o

CAM-ACE-154 CAN-ACE-ISA CAMN-ACZ-PCI GAM-ACE-104
P hilip= G200 Intel 527 SJA 1000 SJA 1000

The third block group, CAN-AC2-PCI SJA 1000, contains the three available
CAN blocks: Setup, Send, and Receive, plus a FIFO Mode block, which is
discussed in Chapter 6, “CAN I/O Support for FIFO”.

CAN Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

[Z1Library: wpclib/.../Softing /CAN-AC2= -|O| x|
File Edit wiew Format Help

CAN-ACE-PCI BT
CAN 1S CANZ
Standamd ¢ Extended

Setup

CAM-ACE-PC] B

u} CAM 1 - 5end E}-

Standard 11bit

Send FIFO hiode

CAN-AGZ-PCI B
CAN 1 - Receine op
Standamrd 11bit

Receaive

5-39

Softing CAN-AC2-PCl with SJA1000 Setup

Purpose Softing CAN-AC2-PCI with SJA1000 Setup block
Librclry xPC Target Library for CAN
Description The Setup block defines general settings of the installed CAN boards.

The CAN driver blocks for this board support up to three boards for
each target system, making up to six CAN ports available. For each
board in the target system, you must use exactly one Setup driver block.

5-40

Softing CAN-AC2-PCI with SJA1000 Setup

Block
Parameters

—canac2poizetup [maszk] [link]

Safting
CaM-AC2-PCl
with 51000

—Parameters

Board 2

CAM 1 - physical bus: I Highspeed (150 11833)

=
=

CaM 1 - baud rate:; I 1 MEaud

CaM 1 - uzer defined baud rate:
[[1.1.4.3]

CAN 2 - physical bus: | Highspeed (150 11698) =]

CAM 2 - baud rate: I 1 MBaud
CaM 2 - uzer defined baud rate:
[[1.1.4.3]

Initizlization command structure:
i

T ermination:

i

FCI slot [-1: autozearch]:

[

ok Cancel Help Apply

Board
Defines the board being accessed by this driver block instance. If
multiple boards are present in the target PC, you can use the

5-41

Softing CAN-AC2-PCl with SJA1000 Setup

board number (1...3) to differentiate the boards. The physical
board referenced by the board number depends on the PCI Slot
parameter. If just one board is present in the target system, select
board number 1.

CAN 1 - physical bus
Defines the physical CAN bus type of CAN port 1. In the board’s
standard hardware configuration, only high-speed CAN is
supported. By extending the board with low-speed CAN piggyback
modules, you can also select low-speed CAN as the physical bus.
Do not change this value to low-speed if no module is present for
the corresponding CAN port. If the module is present (see the
Softing user manual on how to install the modules), you can select
between high-speed and low-speed CAN here.

CAN 1- baud rate
Defines the most common baud rates for CAN port 1. If special
timing is necessary (baud rate), you can select the value User
defined. In this case, you use the CAN 1 - user defined
baud rate parameter to provide the four values for the timing
information. The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

CAN 2 - physical bus
Defines the physical CAN bus type of CAN port 2. In the board’s
standard hardware configuration, only high-speed CAN is
supported. By extending the board with lows-peed CAN piggyback
modules, you can also select low-speed CAN as the physical bus.
Do not set this value should to low-speed if no module is present
for the corresponding CAN port. If the module is present (see the
Softing user manual on how to install the modules), you can select
between high-speed and low-speed CAN here.

5-42

Softing CAN-AC2-PCI with SJA1000 Setup

CAN 2 - baud rate
Defines the most common baud rates for CAN port 2. If special
timing is necessary (baud rate), the value User defined can be
selected. In this case, you can use the CAN 2 - user defined
baud rate parameter to provide the four values for the timing
information. The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

Initialization command structure and Termination
Defines CAN messages sent during initialization and termination
of the Setup block.

Termination
Defines CAN messages sent during termination of the Setup block.

PCI slot (-1: autosearch)
Defines the PCI slot in which the referenced board (board number)
resides. If only one board is present in the target system, set
the value for this control to -1 (autosearch). This ensures that
the xPC Target kernel automatically finds the board regardless
of the PCI slot it is plugged into. If two or more boards of this
type are in the target PC, enter the bus number and the PCI slot
number of the board associated with this driver block. Use the
format [BusNumber, SlotNumber]. Use the xPC Target function
getxpcpci to query the target system for installed PCI boards
and the PCI slots they are plugged into. For more information see
help getxpcpci.

The board allows you to terminate each of the two CAN ports separately
by means of DIP switches at the rear panel. Refer to the Softing user
manual on how to set the DIP switches. Both CAN ports must be
terminated properly when you use the loop-back model provided to

test the board and drivers.

5-43

Softing CAN-AC2-PCI with SJA1000 Send

Purpose
Library

Description

Block
Parameters

5-44

Softing CAN-AC2-PCI with SJA1000 Send block
xPC Target Library for CAN

The Send driver block transmits data to a CAN network from within
a block model.

E: Sink Block Parameters: Send

x|

—canac2poizend [maszk] [link]

Softing
CAN-AC2-PCI
with SJA1000

—Parameters

Board 2

CaN port: | CAN 1 =l

CAM identifier range: I Standard [171-bit) LI

| dentifiers:

|1

[rata frame zizes:

I[ET
[T Shaow status output parts

Sample time:

{0,001

0k, Cancel Help Apply

Board

Defines the board used to send out the CAN messages defined by
this block instance. For more information about the meaning of

Softing CAN-AC2-PCI with SJA1000 Send

the board number see the Setup driver block described above.
If just one board is present in the target system, select board
number 1.

CAN port
Selects the CAN port to which the CAN message is sent.

CAN identifier range
Selects the identifier range of the CAN messages sent by this
block instance. If an application makes use of mixed standard and
extended identifier ranges, you must use at least two instances of
this block, each defining the corresponding identifier range.

Identifiers
Defines the identifiers of the CAN messages sent by this block.
It must be a row vector in which the elements define a set of
either standard or extended identifiers. Each element must be in
the range between 0 and 2031 for standard identifiers or 0 and

229-1 for extended identifiers. The number of identifiers for each
CAN port in a model per physical CAN board cannot exceed 200
(limitation of the firmware’s dynamic object mode). The number of
elements defined here also define the number of input ports of the
block. The block icon displays the selected identifier at each input
port. Each input port accepts the data frame to be sent along with
the CAN message. The signal entering each input port must be a
scalar of type double representing the maximum size of 8 bytes
of a CAN message data frame.

Data frame sizes
Defines the data frame size for each identifier (CAN message) in
bytes. It must be a row vector in which the elements define a set
of data frame sizes. Each element must be in the range between
1 and 8. If the data frame sizes for all identifiers defined in the
control above must be the same, you can provide the size as a
scalar only and scalar expansion applies. If the sizes are different
for at least two identifiers (CAN messages), you must provide
one size element for each identifier defined in the Identifiers
parameter. Therefore the lengths of the two vectors must be
the same.

5-45

Softing CAN-AC2-PCI with SJA1000 Send

5-46

Show status output ports
Enables status output ports for each identifier (CAN message). If
the check box is checked the block shows as many output ports
as input ports. The data type of each output port is a double
and the value is identical to the return argument of function
CANPC_write object(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Code

Description

0

Function successful.

-1

Request overrun.

-4

Timeout firmware communication.

-99

Board not initialized.

Sample time

Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as
needed. For example, by using two instances of the block, you can send
CAN messages at different sample times. Or you can use multiple
instances to structure your model more efficiently.

Softing CAN-AC2-PCl with SJA1000 Receive

Purpose Softing CAN-AC2-PCI with SJA1000 Receive block
Library xPC Target Library for CAN
Description The Receive driver block retrieves data from a CAN network to be used

within a block model. You can use as many instances of the Receive
block in the model as needed.

E: Source Block Parameters: Receive il

—canacZpoireceive [mazk] [link]

Softing
CAN-AC2-PCI
with SJA1000

—Parameters

Board, -
CaN port: | CAN 1 =l
CaN identifier range: | Standard [11-bit) =l

| dentifiers:
|1
Output port options: I Drata ;I

[T Generate interrupts

Sample time:
f0.001

] Cancel Help

Block Board
Parameters Defines the board the CAN messages defined by this block
instance are retrieved from. For more information about the

5-47

Softing CAN-AC2-PCl with SJA1000 Receive

5-48

meaning of the board number, see the Setup driver block
described above. If just one board is present in the target system,
select board number 1.

CAN port

Selects the CAN port from which the CAN messages are retrieved.

CAN identifier range

Selects the identifier range of the CAN messages retrieved by this
block instance. If an application makes use of mixed standard and
extended identifier ranges, you must use at least two instances of
this block, each defining the corresponding identifier range.

Identifiers

Defines the identifiers of the CAN messages retrieved by this
block. It must be a row vector in which the elements define a set
of either standard or extended identifiers. Each element must be
in the range between 0 and 2031 for standard identifiers or 0 and
229 _ 1 for extended identifiers. The number of identifiers for each
CAN port in a model per physical CAN board cannot exceed 200
(limitation of the firmware’s dynamic object mode). The number
of elements defined here also defines the number of output ports
of the block. The block icon displays the selected identifier at
each output port. Each output port outputs the data frame being
retrieved along with the CAN message. The signal leaving each
output port is a scalar of type double representing the maximum
size of 8 bytes of a CAN message data frame.

Output port options

Defines the type of retrieved data output at each output

port. Three different types of data can be output, data

frame, status, and timestamp. The status information is of

type double and is identical to the return value of function
CANPC_read_rcv_data(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Softing CAN-AC2-PCI with SJA1000 Receive

Code | Description

0 No new data received.

1 Data frame received.

2 Remote frame received.

-1 Receive data frame overrun.
-2 Receive remote frame overrun.

-3 Object not active.

-7 Timeout firmware communication

-99 Board not initialized.

The timestamp information is of type double and outputs the
latest time at which a CAN message with the corresponding
identifier was received. This time information in seconds (with a
resolution of 1 microsecond) can be used to implement time-out
logic within your model. The pop-up menu lets you select the
output information at each output port of the block. If you select
Data, each output port signal is a scalar only. If you select Data -
Status, each output port signal is a vector with two elements, in
which the first element contains the data frame and the second
element the status information. If you select Data - Status

- Timestamp, each output port signal is a vector with three
elements, in which the first element contains the data frame, the
second element the status information, and the third element
the timestamp.

Generate interrupts
Defines whether the CAN messages defined in this instance of
the block will initiate an interrupt from the CAN board each
time they are received. If selected, you can use CAN messages to
control model (target application) execution.

Sample time
Defines the sample time at which the Send block is executed
during a model (target application) run.

5-49

Softing CAN-AC2-PCl with SJA1000 Receive

5-50

You can use as many instances of the Send block in the model as
needed. For example, by using two instances of the block, you can send
CAN messages at different sample times. Or you can use multiple
instances to structure your model more efficiently.

CAN Blocks for the CAN-AC2-104 (PC/104) with Philips SJA1000 CAN Controller

CAN Blocks for the CAN-AC2-104 (PC/104) with Philips
SJA1000 CAN Controller

The driver blocks described here support the CAN-AC2-104 (PC/104). The
Philips SJA1000 chip is used as the CAN controller in this configuration
and supports both standard and extended identifier ranges in parallel. The
driver block set for this board is found in the xPC Target I/O block library in
the group CAN/Softing.

E!Lihrary: xpclib/CAN,/Softing - |I:I|£|
File Edit “iew Format Help

o B

CAM-ACE-154 CAN-ACE-ISA CAMN-ACZ-PCI GAM-ACE-104
P hilip= G200 Intel 527 SJA 1000 SJA 1000

The fourth block group, CAN-AC2-104 SJA 1000, contains the three available
CAN blocks: Setup, Send, and Receive, plus a FIFO Mode block, which is
discussed in Chapter 6, “CAN I/O Support for FIFO”.

5-51

5 can I/O Support

[C]Library: pclib/.../Softing/CAN-ACZ- -0 x|
File Edit “iew Format Help

CAN-AGE-104 B
CAN 1/ CANZ
Standar ! Extended

Setup

SAN-ACE-104 B
u] CAM 1 -5end E}-

Standamd 11bit

end FIFO hode

CAN-ACE-104 B
CANM 1 - Receive ap
Standard 11bit

Rece ive

5-52

Softing CAN-AC2-104 with SJA1000 Setup

Purpose Softing CAN-AC2-104 with SJA1000 Setup block
Librclry xPC Target Library for CAN
Description The Setup block defines general settings of the stacked CAN boards.

The CAN driver blocks for this board support up to three boards for
each target system, making up to six CAN ports available. For each
board in the target system, you must use exactly one Setup driver block.

5-53

Softing CAN-AC2-104 with SJA1000 Setup

5-54

—zanac] 04zetup [mazk] [link]

Safting
CaM-aC2-104
with 547000
—Parameterz
B |y
CaM 1 - baud rate:; I 1 MBaud ;I
CAM 1 - uzer defined baud rate;
[[1.1.4.3]
CAM 2 - baud rate: I 1 MBaud LI
CAM 2 - uzer defined baud rate;
[[1.1.4.3]

Initialization command structure:
Ii
T ermination:

Ii
|/0 basze address:

| 2300

kemorny baze address:

| 20000

Interpt ling: | Mone LI

ok Cancel Help | Spply

Softing CAN-AC2-104 with SJA1000 Setup

Block Board

Parameters Defines the board being accessed by this driver block instance. If
multiple boards are present in the target PC, you can use the
board number (1...3) to differentiate the boards. The physical
board referenced by the board number depends on the PCI Slot
parameter. If just one board is present in the target system, select
board number 1. The physical board referenced by the board
number depends on the I/O base address parameter.

CAN 1 - baud rate
Defines the most common baud rates for CAN port 1. If special
timing is necessary (baud rate), you can select the value User
defined. In this case, use the CAN 1 - user defined baud rate
parameter to provide the four values for the timing information.
The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

CAN 2 - baud rate
Defines the most common baud rates for CAN port 2. If special
timing is necessary (baud rate), you can select the value User
defined. In this case, use the CAN 2 - user defined baud rate
parameter to provide the four values for the timing information.
The vector elements have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

Initialization command structure and Termination
Define CAN messages sent during initialization and termination
of the Setup block.

5-55

Softing CAN-AC2-104 with SJA1000 Setup

Termination
Define CAN messages sent during termination of the Setup block.

1/0 base address
Defines the I/0 base address of the board to be accessed by this
block instance. The I/O base address is given by the DIP switch
setting on the board itself. The I/O address range is 3 bytes and
is mainly used to transfer the memory base address the board
should use. See the Softing user manual for this board to set the
I/0 base address. The I/O base address entered in this control
must correspond with the DIP switch setting on the board. If
more than one board is present in the target system, a different
I/0 base address must be entered for each board. In this case
the I/0 base address itself defines which board is referenced by
which board number.

Memory base address
Defines the memory base address of the board to be accessed
by this block instance. The memory base address is a software
setting only (no corresponding DIP switch is found on the board).
The memory address range is 4 KB. If more than one board is
present in the target system, a different memory base address
must be entered for each board. You must make sure that the
defined address ranges do not overlap. Because the xPC Target
kernel only reserves a subset of the address range between
640 KB and 1 MB for memory mapped devices, the address ranges
must be within the following range:

C8000 - D8000

The board allows you to terminate each of the two CAN ports
separately by means of jumpers found on the board. Refer to
the board user manual for how the DIP switches must be set.
Both CAN ports must be terminated properly when you use the
loop-back model provided to test the board and drivers.

Interrupt line
Selects an interrupt line from the list.

5-56

Softing CAN-AC2-104 with SJA1000 Send

Purpose
Library

Description

Softing CAN-AC2-104 with SJA1000 Send block

xPC Target Library for CAN

The Send driver block transmits data to a CAN network from within
a block model. You can define up to 200 send objects for standard and

extended 1dentifiers for each CAN channel.

E: Sink Block Parameters: Send il
—canac2] 0dzend [mazk] [link]
Softing
CAN-AC2-104
with 5147000
—Parameters
Board: =
CaN port: | CAN 1 =l
CaN identifier range: | Standard [11-bi] =l
[dertifiers:
|1

[rata frame zizes:

I[ET
[T Shaow status output parts

Sample time:

{0,001

OF.

Cancel

Help Apply

5-57

Softing CAN-AC2-104 with SJA1000 Send

5-58

Block
Parameters

Board
Defines the board to use to send the CAN messages defined by this
block instance. For more information about the meaning of the
board number, see the Setup driver block described above. If just
one board is present in the target system, select board number 1.

CAN Port
Selects the CAN port to send the CAN message.

CAN identifier range
Selects the identifier range of the CAN messages sent by this
block instance. If an application makes use of mixed standard and
extended identifier ranges, you must use at least two instances of
this block, each defining the corresponding identifier range.

Identifiers
Defines the identifiers of the CAN messages sent by this block. It
must be a row vector in which the elements define a set of either
standard or extended identifiers. Each element must be in the
range between 0 and 2031 for standard identifiers or 0 and 22° - 1
for extended identifiers. The number of identifiers for each CAN
port in a model per physical CAN board cannot exceed 200. The
number of elements defined also defines the number of input
ports of the block. The block icon displays the selected identifier
at each input port. Each input port accepts the data frame to be
sent along with the CAN message. The signal entering each input
port must be a scalar of type double representing the maximum
size of 8 bytes of a CAN message data frame.

Data frame sizes
Defines the data frame size for each identifier (CAN message) in
bytes. It must be a row vector in which the elements define a set
of data frame sizes. Each element must be in the range between
1 and 8. If the data frame sizes for all identifiers defined in the
preceding control must be the same, you can provide the size as a
scalar only and scalar expansion applies. If the sizes are different
for at least two identifiers (CAN messages), one size element must
be provided for each identifier specified in the Identifiers control.
Therefore the lengths of the two vectors must be the same.

Softing CAN-AC2-104 with SJA1000 Send

Show status output ports
Enables status output ports for each identifier (CAN message). If
the check box is selected, the block shows as many output ports
as input ports. The data type of each output port is a double
and the value is identical to the return argument of function
CANPC_write object(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Code| Description

0 Function successful.
-1 Request overrun.
-4 Timeout firmware communication.

-99 Board not initialized.

Sample time
Defines the sample time at which the Send block is executed
during a model (target application) run.

You can use as many instances of the Send block in the model as
needed. For example, by using two instances of the block, you can define
different sample times at which CAN messages are sent out. Or you can
use multiple instances to structure your model more efficiently.

5-59

Softing CAN-AC2-104 with SJA1000 Receive

Purpose Softing CAN-AC2-104 with SJA1000 Receive block
I.ibrclry xPC Target Library for CAN
Description The Receive driver block retrieves data from a CAN network to be used

within a block model. You can use as many instances of the Receive
block in the model as needed.

E: Source Block Parameters: Receive il

—canac2] Ddrecerve [maszk] [link]

Softing
CAN-AC2-104
with SJA1000

—Parameters

Board, -
CaN port: | CAN 1 =l
=l

CAM identifier range:l Standard [171-hit]

| dentifiers:
|1
Output port options: I Drata ;I

[T Generate interrupts

Sample time:
f0.001

] Cancel Help

Block Board
Parameters Defines the board from which the CAN messages defined by this
block instance are to be retrieved. For more information about the

5-60

Softing CAN-AC2-104 with SJA1000 Receive

meaning of the board number, see the Setup driver block. If just
one board is present in the target system, select board number 1.

CAN Port
Selects the CAN port from which to retrieve the CAN message.

CAN identifier range
Selects the 1dentifier range of the CAN messages retrieved by this
block instance. If an application makes use of mixed standard and
extended identifier ranges, at least two instances of this block
must be used, each defining the corresponding identifier range.

Identifiers
Specifies the identifiers of the CAN messages retrieved by this
block. It must be a row vector where the elements define a set of
either standard or extended identifiers. Each element must be
in the range between 0 and 2031 for standard identifiers, or 0
and 229 - 1 for extended identifiers. The number of identifiers for
each CAN port in a model per physical CAN board cannot exceed
200. The number of elements defined here defines the number of
output ports of the block. The block icon displays the selected
identifier at each output port. Each output port outputs the data
frame being retrieved along with the CAN message. The signal
leaving each output port is a scalar of type double representing
the maximum size of 8 bytes of a CAN message data frame.

Output port options
Defines the type of retrieved data output at each output
port. Three different types of data can be output: data
frame, status, and timestamp. The status information is of
type double and is identical to the return value of function
CANPC_read_rcv_data(...), described in the Softing user manual.
Refer to the manual for more information. The function return
codes are:

Code| Description

0 No new data received.

5-61

Softing CAN-AC2-104 with SJA1000 Receive

Code | Description

1 Data frame received.

2 Remote frame received.

-1 Receive data frame overrun.
-2 Receive remote frame overrun.

-3 Object not active.

-7 Timeout firmware communication

-99 Board not initialized.

The timestamp information is of type double and outputs the
most recent time at which a CAN message with the corresponding
identifier was received. This time information in seconds (with a
resolution of 1 microsecond) can be used to implement time-out
logic within your model.

The pop-up menu lets you select the output information output
at each output port of the block. If you select Data, each output
port signal is a scalar only. If you select Data-Status, each
output port signal is a vector with two elements, in which the
first element contains the data frame and the second element the
status information. If you select Data-Status-Timestamp, each
output port signal is a vector with three elements, in which the
first element contains the data frame, the second element the
status information, and the third element the timestamp.

Generate interrupts
Defines whether the CAN messages defined in this instance of the
block initiate an interrupt from the CAN board each time they are
received. If selected, you can use CAN messages to control model
(target application) execution.

Sample time

Defines the sample time at which the Send block is executed
during a model (target application) run.

5-62

Softing CAN-AC2-104 with SJA1000 Receive

You can use as many instances of the Receive block in the model as
needed. For example, by using two instances of the block, you can define
different sample times at which CAN messages are retrieved. Or you
can use multiple instances to structure your model more efficiently.
You can define up to 200 receive objects for standard and extended
identifiers for each CAN channel.

5-63

CAN Bit-Packing

This block constructs CAN data frames, and its output port is normally

connected to an input port of a CAN Send driver block. The block has

one output port of data type double (a scalar), which represents the
data frame entity constructed by the signals entering the block at its
input ports. The number of input ports depends on the setting in the

Cancel Help

Apply

Purpose CAN Bit-Packing block
Library xPC Target Library for CAN
Description
block’s dialog box.
E! Function Block Parameters: CAN bit-packing
—bit2double [mazk] [link]
CAM
Itilitie=
Bit-Packing
—Parameters
Bit patterns [cell aray):
HREE
ok
Block Bit Patterns
Parameters

Specify bit patterns. The data type entered in the control must

be a MATLAB cell array vector. The number of elements in the

cell array define the number of input ports shown by this block
instance. The cell array elements must be of type double array
and define the position of each bit of the incoming value (data

typed input port) in the outgoing double value (data frame).

5-64

CAN Bit-Packing

From a data type perspective (input ports), the block behaves like
a Simulink Sink block, and therefore the data types of the input
ports are inherited from the driving blocks.

The sample time of the block is also inherited from the driving blocks.
Therefore no explicit sample time must be provided in the block’s dialog
box.

Example The functionality of the block is best explained by means of an example.

Assume that a node on the CAN network needs to receive a CAN
message with identifier 156 having the following data frame content.
The data frame must be 6 bytes long.

Byte 0 Function class of type uint8

Byte 1 Function subclass of type uint8
with reversed bit order

Byte 2 Reserved, all bits must be 1

Byte 3 Bit 0 must be 0, Bit 1 must be

a boolean (flag), bits 2 to 7 must
be bit 2 to 7 of an incoming int8
value (control)

Byte 4 and 5 Value of type int16

The bit pattern cell array, which bit-packs the data frame according to
the above specification, can look as follows:

{ [0:7] , [15:-1:8] , [16:23] , [25] , [-1,-1,26:31] , [32:47] }

5-65

CAN Bit-Packing

And the Simulink model simulating the needed behavior would be as
shown.

[=]bitpackdemo =10]

File Edit Wiew Simulation Format Tools Help

uirits

uint& 112}
GAM-ACEZ-PC B

Function Glass CAM 1P CAN 2
Standar ! Extended

uirits Setup
—— 07

uintd2a)

Function subclass
= 15:-1:5

uingizss) A0S W 16:23 e SAN-AGCE-PSI B
———{0 GCAN 1 - Send
Resaried ™8 Standam 11bit
A,-1,26:31 Send
bookan(l) [C22EA0 -
Flag CAN bit-packing
melas] o
Santml
int15(-12e70) TS
Cantmoll

Analyze the model.

The first input is the function class of type uint8, which has an example
value of 112. This value becomes byte 0 (bits O to 7) of the data frame.
Therefore the first bit (element 1 of double array [0:7]) gets bit 0 of

5-66

CAN Bit-Packing

the data frame, the second bit 1, and so on. It is easiest to define this
mapping by the MATLAB colon operator (:).

The second input is the function subclass of type uint8, which has an
example value of 23. This value becomes byte 1 (bits 8:15) of the data
frame but in reversed bit order. Therefore the first bit (element 1 of
double array [15:-1:8]) gets bit 15, the second bit 14, and so on. It is
easiest to define this mapping by the MATLAB colon operator (:) and
an increment of -1.

The third input is only necessary because the reserved byte 2 must
have all bits set to 1. If a bit position in the outgoing data frame is

not referenced by a bit pattern array element, the bit is 0 by default,
but there is no way to set them to 1 as the default. Therefore a uint8
constant with value 255 must be brought in externally. The constant
255 must get to bit position 16 to 23 (byte 2) of the outgoing data frame.

Because bit 0 of data frame byte 3 (bit 24) must be 0, and 0 is the default
bit value if not referenced by a bit pattern array element, no explicit
action is taken here.

The fourth input is the flag of type Boolean, which has an example
value of 1. This value must become bit 1 of byte 3 (bit 25) of the data
frame. Therefore the single bit (element 1 of double array [25]) must get
bit 25 of the data frame.

The fifth input is the control of type int8, which has an example value
of 121. But only bits 2 to 7 must be mapped into the outgoing data
frame or, in other words, bits 0 and 1 must be thrown away. Because
indexing of incoming values always starts with the first bit (bit 0),

a special indexing value (-1) must be used to skip bit 0 and 1 of the
incoming int8 value. Bits 2 to 7 are directly mapped to bits 2 to 7 of byte
3 (bits 26 to 31) of the outgoing data frame. This leads to the following
bit pattern: [-1,-1,26:31].

The sixth input is the value of type int16, which has an example value
of -12270. This value must become byte 4 and 5 (bits 32 to 47) of the
outgoing data frame. Therefore the first bit (element 1 of double array
[32:47]) must get bit 32 of the data frame, the second bit 33, and so on.
It is easiest to define this mapping by the MATLAB colon operator (:).

5-67

CAN Bit-Packing

The output of the block then consists of a double value representing the
packed data types within the first six bytes. The last two bytes are
zero. This means that even in the case where less than eight bytes are
significant, the CAN data frame 1s always represented by a double value
(eight bytes). The value of the constructed floating-point double does
not have any particular meaning but you still see it with a numerical
display.

[=] sink Block Parameters: Send 1 x|

—zanac1 04zend [mask] [link]

Softing
CAM-ACZ2-104
with S.A1000

—Parameters

Bu:uaru:l:l 1

CAN port: | CAN 1

Ll Le) L

CaM identifier range:l Standard [171-bit]

|dentifiers:

|[156]

Data frame sizes:
|]
[~ Show status output paorts

Sample time:

f0.001

0k, Cancel Help Apply

5-68

CAN Bit-Packing

The data frame is then propagated to the CAN Send driver block and is
sent as part of a CAN message having identifier 156. In the Send block’s
dialog box, the data frame size is defined as 6 bytes. This ensures that
only the first six bytes of the incoming double value are transmitted as
part of the CAN message.

5-69

CAN Bit-Unpacking

Purpose
Library

Description

Block
Parameters

5-70

CAN Bit-Unpacking block
xPC Target Library for CAN

This block is used to extract CAN data frames, and its input port is
normally connected to an output port of a CAN Receive driver block. The
block has one input port of data type double (a scalar), which represents
the data frame entity from which the signals are extracted and leaving
the block at its output ports. The number of output ports and the data
type of each output port depend on the settings in the block’s dialog box.

E Function Block Parameters: CAN bit-unpacking il
—doubleZbit [maszk.] [link]
CaM

LItilities

Bit-Unpacking

—Parameters

Bit patterns [cell aray):
1 [0:15] %

[rata types [cell aray]:
|4 'uint16" }

0k, Cancel Help Spply

Bit Patterns
Lets you define the bit patterns in a flexible way. The data type
entered in the control must be a MATLAB cell array vector. The
number of elements in the cell array define the number of output
ports shown by this block instance. The cell array elements must
be of type double array and define the position of each bit of the

CAN Bit-Unpacking

Example

incoming value (data typed output port) in the incoming double
value (data frame).

Data Types

From a data type perspective (output ports), the block behaves
like a Simulink Source block, and therefore the data types of the
output ports must be defined in the second control (edit field). The
data type entered in that control must be a MATLAB cell array
vector of the same length as the bit pattern cell array. The cell
array elements must be of type char and define the data type of the
corresponding output port. The following values are supported:

boolean, int8, uint8, int16, uint16, int32, uint32

The sample time of the block is inherited from the driving block.
Therefore no explicit sample time need be provided in the block’s dialog
box.

Note that if you unpack the data frame into a signed type (int8, int 16,
or int 32), the block performs sign extension as necessary. For example,
if the bit pattern is [0:4], and the data type is int8, you are extracting
5 bits into an 8 bit wide signed type. In this case, bits 5, 6, and 7 are the
same as bit 4, resulting in the proper sign extension. This functionality
enables you to pack and unpack negative numbers without losing
accuracy. In the preceding example, you can pack and unpack numbers
in the range [-16 : 15] (a fictitious int5 type).

The functionality of the block is easiest explained by means of

an example. The same example as used above demonstrates the
functionality of the bit-packing block. But in this case, the data frame is
sent by an external CAN node and is received by the target application
running on an xPC Target system. Therefore the bit-unpacking block
is used to extract the various data fields from the entire data frame.
Because the bit pattern definitions of the packing and unpacking block
are symmetric, the bit pattern definition could look exactly the same.
There is one simple optimization possible: You do not need to extract
byte 2 (reserved area), because its content is known. The bit pattern
edit field can therefore look as follows:

5-71

CAN Bit-Unpacking

5-72

=] bitunpackdemo =101 %]

File Edit M“iew Simulation Format Tools Help

{ [10:7] , [15:-1:8] , [25] , [-1,-1,26:31] , [32:47] }

and the data type edit field as

{ 'uint8' , 'uint8' , 'boolean' , 'int8' , 'int16' }

CAN-ACE-PCI B
CAN 1 CAN 2
Standamr ! Extended

s RUCIN [—

o7

Function class
CAN-ACE PGS BT 158:-1:8

T [E—
dowble

CAN 1 - Receine u] Function subclass
Standamrd 11bit
o5 boclean » :

Rece e
Flzg

v oo La.- N— | I
Contml

3247 -|' |—> o

Walue

CAM bit-unpaching

This leads to the following Simulink model.

In many cases it makes sense to test the proper bit-packing and
bit-unpacking operations in a Simulink model (simulation) before
building the target application. Both blocks work the same way either
in the Simulink system or the generated code. By combining the

CAN Bit-Unpacking

two models shown so far, a third model emerges that can be used to
simulate the behavior.

" |bitpackunpackdemo - |EI|5|

File Edit Wiew Simulstion Format Tools Help

uimgr gy e
. - 1.13=-309
Function Class
Ltz frame
imgie3) (-0 AN
| 0:7 o7
Function subclass ’ -
W [Function class
s |
. unts 16:23 15:1:8
uimsgess) 42— doubie
- Function subelass1
Resened P 25
> bocean
beclean Wl 1,1,26:31 > =3 >
boolkan(l) 2047 . Flag1
. ints 120
A,1,26:31 -
Fleg GAN bit-packing v

gy ContoE
) irtE 42270
Contml 247 -l) -

. it Walus
int16(-12270) CAM bit-unpacking

Sontm

5-73

CAN Timeout Detection

Purpose CAN Timeout Detection block
Library xPC Target Library for CAN
Description The CAN Timeout Detection block uses the timestamp information to

calculate the time-out condition. For examples of this block usage, see

¢ “Detecting Time-Outs When Receiving CAN Messages” on page 5-15
— Detecting time-outs example
e xpccanpci — Loop-back example for the CAN-AC2-PCI board

e xpccanpc104 — Loop-back example for the CAN-AC2-104 board

E! Function Block Parameters: CAN Timeoukt Detection

—spocantimeout [mazk] [link]
CAM
[Itilities
Timeout Detection

—Parameters

Timneot [z]:

0k, Cancel Help Spply

Block Timeout
Parameters Specify the time-out value, in seconds. The output of the block is:

¢ 0, if no time-out has been detected

e 1,if a time-out has been detected

5-74

CAN I/O Support for FIFO

¢ “Introduction” on page 6-2
¢ “FIFO CAN Demonstrations” on page 6-7
e “Acceptance Filters” on page 6-9

o “Accessing CANdb DBC Format Databases from the xPC Target
Environment” on page 6-11

e “CAN FIFO Blocks for the CAN-AC2-PCI with Philips SJA1000 CAN
Controller” on page 6-14

¢ “CAN FIFO Blocks for the CAN-AC2-104 with Philips SJA1000 CAN
Controller” on page 6-41

6 caN |/O Support for FIFO

6-2

Introduction

In this section...

“Summary of FIFO Mode” on page 6-2

“FIFO Mode Drivers for CAN Boards from Softing” on page 6-3

Summary of FIFO Mode

This chapter describes the alternative First In First Out (FIFO) CAN drivers
provided with the xPC Targetblocks. The standard CAN drivers for the
CAN boards from Softing GmbH (http://www.softing.com) program the
CAN board firmware to run in Dynamic Object Buffer (DOB) mode. This
mode is best suited for real-time environments where it is mandatory that
the driver latency time is time deterministic. Actually, running the firmware
in Dynamic Object Buffer mode is always the best choice except for the
undesired side effect of high driver latency times.

¢ Sending a CAN message — When sending a CAN message, the latency
time is the time interval between the time accessing the board to provide
all the information for the CAN message to be sent and the time the board
returns the acknowledgment that the information has been received by
the firmware.

Note Each CAN channel has two FIFOs, DPRAM and SRAM. The xPC
Target FIFO block writes into the DPRAM FIFO. The Softing board
transfers the messages from the DPRAM FIFO to the SRAM FIFO, from
which the messages are transmitted onto the CAN bus. The DPRAM can
buffer up to 31 messages; the SRAM can buffer up to 127 messages. This
implies that while 127 messages can be buffered during congestion on the
CAN bus, the 31 message limit of the DPRAM limits how many messages a
model can write at one time.

® Receiving a CAN message — When receiving a CAN message, the
latency time is the time interval between the time accessing the board to
ask for current data (object data) of a certain CAN identifier and the time

http://www.softing.com

Introduction

the board returns the actual data and other information about the CAN
message.

Disadvantages of Dynamic Object Buffer mode — These latency times
are mainly defined by the reaction time of the board firmware. In the case
of the Softing boards, the latency time is the same for sending and receiving
messages, with a fixed value of about 40 us. If your xPC Target application
has to send and receive a large number of CAN messages, the overall
latency time can quickly become high and can make it impossible to run the
application at the desired base sample time.

For example, assuming that a specific xPC Target application gets data
from 12 CAN identifiers and transmits data by using eight CAN messages,
the total number of CAN board read and write accesses adds up to 20. This
results in a total CAN I/O latency time of

20*40 vs = 800 us

With such an application, base sample times below 800 us are impossible even
if the dynamics of the corresponding Simulink model are simple and would
only need 20 us of computation time.

Advantages of Dynamic Object Buffer mode — However, even if the CAN
I/0 latency time in Dynamic Object Buffer mode is high, the benefit of this
mode is that the latency time stays constant almost independent of the traffic
volume on the CAN network. This means that the Dynamic Object Buffer
mode is best suited for xPC Target applications that only deal with a small
subset of all CAN messages going over the CAN network.

FIFO Mode Drivers for CAN Boards from Softing

The CAN boards from Softing support another mode, called First In First
Out (FIFO) mode. In this mode the Dynamic Object Buffer mode abstraction
layer in the firmware is missing, and the firmware plays the role of a slim
interface between the receive and transmit FIFOs and the drivers in the
application code. Because of this slimmer interface, the I/O latency times
are considerably smaller. Writing to the transmit FIFO takes 4 us per CAN
message and reading one event (CAN message) from the receive FIFO takes
17 us. Both of these latency times are smaller than the 40 us for Dynamic
Object Buffer mode. While writing to the transmit FIFO is efficient, this is

6 caN |/O Support for FIFO

not the case for reading from the receive FIFO. Because the receive FIFO is
filled with all CAN messages (identifiers) going over the CAN network, there
can be a lot of data (CAN messages) that have to be read out of the FIFO
even if their data is not used in the target application. Because of the FIFO
structure, all events (messages) have to be read until the message is returned
that is propagated to the target application. The driver code for reading the
receive FIFO is principally a while loop, and this can add the problem of
non-deterministic latency times.

You resolve the latency time issue in the xPC Target CAN FIFO drivers

by defining a receive FIFO read depth that is a constant number during
application execution. For example, if you assume a FIFO read depth of

5, each time the Read Receive FIFO driver block is executed at the block
sample time, the driver code reads and returns five events (messages) from
the receive FIFO. This is independent of how many events the FIFO currently
contains. There can be only two messages received in the FIFO and the third
to fifth read attempt might just return the "No new event" code. Nevertheless,
because the FIFO read latency does not exceed 17 us regardless of the event
read out of the FIFO, the latency time becomes deterministic and is the Read
FIFO Depth multiplied by 17 us. The driver block returns all new events and
therefore all CAN messages going over the network. If only a small subset

of the CAN messages received must be processed in the target application,
the total latency can easily exceed the latency encountered with the Dynamic
Object Buffer mode for the same application. There is another restriction
specific to the FIFO mode concept. Using more than one Read Receive

FIFO block in a Simulink model is not recommended, because a new event
(message) read by one block instance cannot be read again by another block
instance (the event is no longer in the FIFO buffer). Therefore the entire CAN
receive part has to be concentrated in one Read Receive FIFO block in your
model. For the write transmit FIFO side, this restriction does not apply. Here
you can use as many instances as you want.

The Setup block for the CAN FIFO mode controls the CAN acceptance filters
of the CAN controller. The acceptance filter defines a range of CAN messages
not to be forwarded to the receive FIFO. Filtering out unwanted CAN
messages can drastically reduce the read receive FIFO latency time because
the unwanted messages do not reach the receive FIFO. Unfortunately, the
acceptance filter process uses binary evaluation, which does not allow filtering
messages below and above a certain decimal range. Therefore the use of the
acceptance filter only resolves the problem for a small subset of CAN network

Introduction

applications. See “Acceptance Filters” on page 6-9 for more information on
this.

Look again at the example of 12 messages to be received and eight messages
to be transmitted. If those 20 messages with their specific identifiers are
the only messages going over the CAN network (100% usage ratio) the total
latency time is

12*17 us + 8*4 us = 236 us

This is a considerable smaller value than the 800 us that results when you
use Dynamic Object Buffer mode drivers.

For the next case, assume that there are 12 additional messages going
regularly over the network that do not need to be processed by the target
application. Additionally, assume that those messages cannot be filtered by
the CAN controller acceptance filter. Then the total latency time increases to

12*17 vus +20*4 us = 284 vus

There is no impact on the final result. That is the trade-off. Therefore,

the FIFO mode drivers are best suited for either CAN network monitoring
applications or low-latency CAN applications where the ratio between the
number of messages to be processed and the number of total messages going
over the network is high.

FIFO mode drivers are especially suited for monitoring type applications,
because FIFO mode can return additional information such as the bus state
or the reception of error frames. Dynamic Object Buffer mode drivers do
not allow querying such information.

This documentation only covers the differences between the Dynamic Object
Buffer mode drivers (standard drivers), and the FIFO mode drivers introduced
here. It assumes that you are familiar with the Dynamic Object Buffer mode
drivers and have successfully run one of the loop-back tests provided with the
xPC Target product.

If you use FIFO mode drivers in your model, you must replace all Dynamic
Object Buffer mode blocks (Setup, Send, Receive) with FIFO mode driver
blocks. The CAN-AC2-xxx boards from Softing do not let you run the two CAN
ports in different modes. Therefore the mode has to be same for both ports,

6 caN |/O Support for FIFO

but you can use more than one CAN board and run the boards in different
modes just by selecting the correct I/O driver blocks.

As mentioned in the standard CAN chapter, you should not use the CAN-AC2

(ISA) for new projects. Instead use the CAN-AC2-PCI. Therefore, FIFO mode
drivers are only provided for the CAN-AC2-PCI and the CAN-AC2-104 boards.

6-6

FIFO CAN Demonstrations

FIFO CAN Demonstrations

xPC Target FIFO CAN Demonstrations for
CAN-AC2-PCl and CAN-AC2-104 Boards

The xPC Target demos directory contains the following demos that illustrate

the use of the Softing CAN FIFO blocks.

CAN-AC2-PCI Demo

CAN-AC2-104 Demo

Demonstrates CAN
1/0 Communication
Using FIFO Mode of
the...

CAN I/0
Communication Using
the CAN-AC2-PCI
Board with FIFO (1)

CAN 1/0
Communication Using
the CAN-AC2-104
Board with FIFO (1)

Softing CAN-AC2-PCI
and CAN-AC2-104
boards and illustrates
basic functionality of
the boards.

CAN 1/0
Communication Using
the CAN-AC2-PCI
Board with FIFO (2)

CAN 1/0
Communication Using
the CAN-AC2-104
Board with FIFO (2)

Softing CAN-AC2-PCI
and CAN-AC2-104
boards and illustrates
the condition and
detection of the No new
event message.

CAN I/0
Communication Using
the CAN-AC2-PCI
Board with FIFO (3)

CAN 1/0
Communication Using
the CAN-AC2-104
Board with FIFO (3)

Softing CAN-AC2-PCI
and CAN-AC2-104
boards and illustrates
how CAN messages
can be dynamically
constructed at
run-time.

6-7

6 caN |/O Support for FIFO

6-8

CAN-AC2-PCl Demo

CAN-AC2-104 Demo

Demonstrates CAN
1/0 Communication
Using FIFO Mode of
the...

CAN T1/0
Communication Using
the CAN-AC2-PCI
Board with FIFO (4)

CAN T1/0
Communication Using
the CAN-AC2-104
Board with FIFO (4)

SoftingCAN-AC2-PCI
and CAN-AC2-104
boards. For the case
where data is being
received faster than it is
being processed, these
demos illustrate how
to stop execution of the
model after detecting a
receive FIFO overflow.

CAN 1/0
Communication Using
the CAN-AC2-PCI
Board with FIFO (5)

CAN T1/0
Communication Using
the CAN-AC2-104
Board with FIFO (5)

Softing CAN-AC2-PCI
and CAN-AC2-104
boards. For the case
where data is being
received faster than it is
being processed, these
demos illustrate how to
reset the receive FIFO
before it overflows.

CAN T1/0
Communication Using
the CAN-AC2-PCI
Board with FIFO (6)

CAN T1/0
Communication Using
the CAN-AC2-104
Board with FIFO (6)

Softing CAN-AC2-PCI
and CAN-AC2-104
boards and illustrates
how to use acceptance
filters. The objective
is to filter any CAN
messages with an
identifier larger than
1217.

Acceptance Filters

Acceptance Filters

In this section...

“Using Acceptance Filters” on page 6-9
“Acceptance Filter Example” on page 6-10

Using Acceptance Filters

As mentioned earlier, you can use the CAN controller’s acceptance filters

to ensure that certain received messages referenced by their identifiers are
written into the receive FIFO. Therefore, fewer read attempts are necessary
to get at the messages that are of importance for the target application.

The behavior of the acceptance filter is described for standard and extended
identifier ranges individually (one for standard identifiers and one for
extended identifiers). Each acceptance filter is defined by a mask parameter
and a code parameter.

The mask parameter defines, for each bit of the identifier, whether the
filtering process cares about this bit or not. A 0 means “don’t care” and a 1
means “do care.”

The code parameter then defines, for each bit of the identifier, that the
filtering process cares about (defined by the mask parameter), what the bit
value has to be (0 or 1).

For standard identifiers the mask parameter and code parameter must be
both, in the range 0 to 2047. For extended identifiers the mask parameter and

code parameter must be both, in the range 0 to 22°-1.

The filtering process evaluates the following binary expression:

and(xor(mask, identifier), code)

If all bits of the resulting value are 0, the message with this identifier is
accepted. If any bit is 1, the message is voided.

According to this description, acceptance filters work using binary evaluation,
while most applications differentiate messages (identifiers) in a decimal or

6-9

6 caN |/O Support for FIFO

6-10

hexadecimal manner. As a consequence, it is possible to filter messages, whose
identifiers are above a certain decimal number. The opposite (identifiers
below a certain decimal number) cannot be achieved in a general way.

Acceptance Filter Example

The default values for the mask parameter and the code parameter in the
FIFO setup driver block are both 0. These parameter values ensure (the
above expression always evaluates to 0) that all incoming messages will reach
the receive FIFO (no filtering takes place). All parameter values are defined
using decimal numbers. You can use the MATLAB function hex2dec to define
hexadecimal numbers in the dialog box entry.

Assume a CAN application where messages with the following identifiers
(standard) are crossing the CAN network:

2-30, 48-122 (decimal)

Additionally, only incoming messages 4-29 must be processed by the target
application. Ideally, all messages not having identifiers 4-29 would be filtered
out, but the mask and code parameters do not allow this exact scheme. The
closest you can achieve is filtering out all messages with identifiers above 31
by using value 2047-31=2016 for the mask parameter and value O for the code
parameter. The messages with identifier 0, 1, 2, and 3 cannot be filtered out
and are returned by the FIFO read driver block, even if they do not need to be
processed by the target application.

Accessing CANdb DBC Format Databases from the xPC Target™ Environment

Accessing CANdb DBC Format Databases from the xPC
Target Environment

You can use CANdb DBC files to specify the packing and unpacking of CANdb
messages in a target application. The CANDBC library (available from within
the CAN library) includes blocks for the decoding and formatting of these
messages. The CAN library also includes a CANDBC Translator block, which
translates the CANdb message to one that the xPC Target software can write
into the transmit FIFO with a FIFO mode Write block.

To access a CANdb DBC format file, drag a CAN Message Packing (CANdb)
block into your model and configure the Use file exported from CANdb
parameter to reference your CANdb DBC format file.

The xpccandbcfifo model illustrates how to read the CANdb messages in
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\demo.dbc.

6-11

6 caN I/O Support for FIFO

Z)#pecandbefifo * - 0] x|

File Edit View Simulation Format Tools Help

CAN-ACZ-PCIBA
FIFO: CAN 1/ CANZ
Standard / Extended

FIFO Setup 1
CAN-ACZ-PCI B1
FIFD mode —@
irite -
(3 }——msignaduaz Displayd
partd FIFO Wirite
Signal3 115 DATA FIFO MODE U=l dsety
pertt - Linpack pla
f Hisa Salector?
Signalz Ug DATA OBJECT MODE
port2 i i=plave
CANDBG Translatar Byte Unpacking 2
Signal1 Ug
port3 i
CAMN hieszage Packing Displayd
(CANdb)

Fort 2 | U=l ety P et oo arget Scop
EAN-ACZ-PE] BN p SDF CAN MESSAGE soopa GFE "
FIFO mode + 1782 —’. NFO cope (<PC) Scope (P11
Read FIFD Read Filter 1 'QI‘:‘ §°°

FIFO Read
Ury=ildx=1) Lnpac Scope (xPC)12
rget Sco
INCOMING i
SlEHALS Byte Unpacking 1 .

Scope (xPC13

arget Scop
Id: 5

Scope (xPC14

4

To capture data received by xPC Target CAN receive blocks and translate
the data into CANdb format:

¢ FIFO mode — Use the FIFO Mode CAN Message block.
® Object mode — Use the Object Mode CAN Message block.

6-12

Accessing CANdb DBC Format Databases from the xPC Target™ Environment

Note For information about the CANdb message blocks and CANdDb drivers,
see the CAN Blockset Reference. In particular, note the documentation for
the “CAN Message Blocks”.

The documentation for the CAN Drivers (Vector) library does not apply to the
xPC Target product. Instead, use the xPC Target CAN FIFO blocks (described
in this chapter) to send and receive the CAN messages.

6-13

6 caN I/O Support for FIFO

CAN FIFO Blocks for the CAN-AC2-PCl with Philips
SJA1000 CAN Controller

The driver blocks described here support the CAN-AC2-PCI using FIFO mode.
The Philips SJA1000 chip is used as the CAN controller in this configuration
and supports both standard and extended identifier ranges in parallel. The
driver block set for this board is found in the xPC Target I/O block library in
the group CAN/Softing.

E!Lihrary: xpclib/CAN,/Softing - |I:I|£|
File Edit “iew Format Help

o [o

CAM-ACE-154 CAN-ACE-ISA CAMN-ACZ-PCI GAM-ACE-104
P hilip= G200 Intel 527 SJA 1000 SJA 1000

The third block group, CAN-AC2-PCI SJA 1000, contains the FIFO mode
subgroup.

6-14

CAN FIFO Blocks for the CAN-AC2-PCI with Philips SJAT000 CAN Controller

[=] sink Block Parameters: FIFD Write x|

—anac2peivritefifo [mask] [link]

Safting
CaM-AC2-PC
with S.0A1000

—Parameters

Board 7

[T Show status output port

Sample tirme:
{0001

ak. Cancel Help Spply

6-15

6 caN I/O Support for FIFO

The highlighted group contains all driver blocks available for FIFO Mode

CAN.

[ZlLibrary: xpclib/.../CAN-ACZ-PCI 5JA 1000;FIFD Mode
File Edit Wiew Formab Help

=10 x|

CAN-AGE-PCI BT Fort: any F
FIFC: AR 1 FCAN 2 -
Standamrd ! Extended - k.
FIFD Setup FIFZ2 Read Fiter
CAM-AGE-PS] B CAM-AGE-PS] B
FIFZ2 rade FIFZ2 rade [
Wi rite ZT FIFZ level
FIFC Wit FIFZ Read ZuT Lewvel
CAN-ASE-PCT BT CAN-ASE-PCT BT
FIFZ rode [FIFZ rode [
FRizad RZY FIFD kevel
FIFZ Read FIFZ Read RSV Lewel

CAN-ACE-PCI BT
FIFZ rmiade
Resat 30T FIFD

FIFD Rasat T

GAN-ACZ-PSI B
FIFZ mode
Rasat RCYW FIFD

FIFD Rasat RCW

6-16

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Setup
|

Purpose Softing CAN-AC2-PCI with Philips SJA1000 FIFO Setup block
Librclry xPC Target Library for CAN
Description The Setup block defines general settings of the installed CAN board(s).

The CAN driver blocks for this board support up to three boards for
each target system, making up to six CAN ports available. For each
board in the target system, you can use one Setup block in a model.

6-17

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Setup

E! Block Parameters: FIFO Setup il

— canac2poizetupfito [mazk] [link)

Softing
CaM-AC2-PCI
with 547000

—Parameters

Board v

CAN 1 - physical bus: | Highspeed (150 11838 !
=l

CAM 1 - baud rate: | 1 MBaud
CAM 1 - uger defined baud rate:

[[1.1.4.3]

CAM 1 - acceptance [Stdk azk, StdCode, Exthd azk, ExtCode]:

f[0.0.0.0]

CAN 2 - physical bus: | Highspeed (150 11838) |
CAN 2 - baud rate: | 1 MBaud [
CAM 2 - uzer defined baud rate:

[[1.1.4.31

CAM 2 - acceptance [Stdid azk, StdCode, Exttazk, ExtCode]:

f[0.0.0.0

[Enable ermor frame detection
[nitialization cormmand struchure:
In

Termninatior:

In

PCI zlot [-1: autozearch):

[

ak LCancel Help Apply

6-18

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Setup

Block
Parameters

Board
Defines the board being accessed by this driver block instance. If
multiple boards are present in the target PC, you can use the
board number (1...3) to differentiate the boards. The physical
board referenced by the board number depends on the PCI Slot
parameter. If just one board is present in the target system, select
board number 1.

CAN 1 - physical bus
Defines the physical CAN bus type of CAN port 1. In the board’s
standard hardware configuration, only high-speed CAN is
supported. By extending the board with low-speed CAN piggyback
modules, you can also select low-speed CAN as the physical bus.
Do not change this value to low-speed if no module is present
for the corresponding CAN port. If the module is present (see
the Softing user manual for how to install the modules), you can
select between high-speed and low-speed CAN here.

CAN 1 - baud rate
Defines the most common baud rates for CAN port 1. If special
timing is necessary (baud rate), select User defined.

CAN 1 - user defined baud rate
If you select User defined from the CAN 1 Baud rate list, enter
the four values for the timing information. The vector elements
have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user manual
for this board.

CAN 1 - acceptance
Defines the acceptance filters for the CAN 1 port. Because the
receive FIFO is filled with any CAN messages going over the
bus, the use of the CAN controller acceptance filters becomes
important to filter out unwanted messages already at the
controller level. This acceptance filter information is provided by

6-19

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Setup
|

a row vector with four elements in which the first two are used
to define the acceptance mask and acceptance code for standard
identifiers and the latter two for extended identifiers. The default
value defined by the Setup block does not filter out any messages.
For information on how to define the acceptance information to
filter certain messages, see “Acceptance Filters” on page 6-9.

CAN 2 - physical bus
Defines the physical CAN bus type of CAN port 2. In the board’s
standard hardware configuration, only high-speed CAN is
supported. By extending the board with lows-peed CAN piggyback
modules, you can also select low-speed CAN as the physical bus.
Do not set this value should to low-speed if no module is present
for the corresponding CAN port. If the module is present (see the
Softing user manual on how to install the modules), you can select
between high-speed and low-speed CAN here.

CAN 2- baud rate
Defines the most common baud rates for CAN port 2. If special
timing is necessary (baud rate), select User defined.

CAN 2 - user defined baud rate
If you select User defined from the CAN 2 baud rate list, enter
the four values for the timing information. The vector elements
have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

CAN 2 - acceptance
Defines the acceptance filters for the CAN 2 port. Because the
receive FIFO is filled with any CAN messages going over the
bus, the use of the CAN controller acceptance filters becomes
important to filter out unwanted messages already at the
controller level. This acceptance filter information is provided by
a row vector with four elements in which the first two are used

6-20

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Setup

to define the acceptance mask and acceptance code for standard
identifiers and the latter two for extended identifiers. The default
value defined by the Setup block does not filter out any messages.
For information on how to define the acceptance information to
filter certain messages, see “Acceptance Filters” on page 6-9.

Enable error frame detection
If the CAN controller should detect error frames and forward
these to the Receive FIFO, select this box. Selecting this box
makes sense for monitoring applications where you want to be
informed about all events going over the bus. For low-latency time
applications, selecting this box might increase the FIFO Read
driver block latency time because the receive FIFO gets filled with
additional events.

Initialization command structure and Termination (struct)
Define the CAN messages sent during initialization and
termination of the Setup block. For more information, see the
standard CAN driver documentation in “Defining Initialization
and Termination CAN Messages” on page 5-10 in the Chapter
5, “CAN I/0 Support” chapter.

Termination
Define the CAN messages sent during termination of the Setup
block. For more information, see the standard CAN driver
documentation in “Defining Initialization and Termination CAN
Messages” on page 5-10 in the Chapter 5, “CAN I/O Support”
chapter.

PCI Slot (-1: autosearch)
Defines the PCI slot in which the referenced board (board number)
resides. If only one CAN board is present in the target system,
the value for this control should be -1 for autosearch. This value
ensures that the xPC Target kernel automatically finds the board
regardless of the PCI slot it is plugged into. If two or more boards
of this type are in the target PC, enter the bus number and the
PCI slot number of the board associated with this driver block.
Use the format [BusNumber, SlotNumber]. Use the xPC Target
function getxpcpci to query the target system for installed

6-21

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Setup

6-22

PCI boards and the PCI slots they are plugged into. For more
information see help getxpcpci.

The board allows you to terminate each of the two CAN ports separately
by means of DIP switches at the rear panel. Refer to the Softing user
manual on how to set the DIP switches. Both CAN ports must be
terminated properly if you use the loop-back model provided to test the
board and drivers.

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Write

Purpose
Library

Description

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Write Driver block
xPC Target Library for CAN

The FIFO Write driver block is used to write CAN messages into the
transmit FIFO. The firmware running in FIFO mode processes the
information found in the transmit FIFO and finally puts the constructed
CAN messages onto the bus.

The block has one input port of type double. At this port, all necessary
information has to be provided to construct valid CAN messages to be
written into the transmit FIFO. For each CAN message, five elements
are passed:

Port
The value can be either 1 (port 1) or 2 (port 2) and defines the port
the CAN message is sent from.

Identifier
Identifier of the CAN message to be sent. If it is a standard CAN
message the valid range is 0 to 2047. If the CAN message is
extended, the range is 0 to 22°-1.

Identifier type
The value can be either 0O (standard identifier range) or 1
(extended identifier range) and defines the identifier type of the
outgoing CAN message.

Data frame size
The value can be in the range of 0 to 8 and defines the data frame
size in bytes of the outgoing CAN message.

Data
This is the data for the data frame itself and is defined as a double
value (8 bytes). The CAN packing block is used to construct the
data as a double value.

Because all this information can be dynamically changed in FIFO mode
during application execution, the information is provided at the block

6-23

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Write

6-24

input instead of you setting them through block parameters. To be able
to transmit more than one CAN message per block instance, a matrix
signal 1s used as a container for all information.

The dimension of the matrix signal entering the block has to be n*5,
where n is the number of CAN messages to be sent by this block
instance. Therefore each row of the matrix signal defines one CAN
message and each row combines the five elements of information
defined above (in this order).

For more on how to construct the correct matrix signal for the FIFO
write block, see “FIFO CAN Demonstrations” on page 6-7.

For certain applications it might be necessary to make the writing
of a CAN message into the transmit FIFO dependent on the model
dynamics. For this case, the matrix signal can also be of dimension
n*6 instead of n*5. In this case, the sixth column defines whether the
corresponding CAN message is written into the transmit FIFO (1) or
not (0).

[=] sink Block Parameters: FIFD Write x|

—anac2peivritefifo [mask] [link]

Safting
CaM-AC2-PC
with S.0A1000

—Parameters

Board 7

[T Show status output port

Sample tirme:
{0001

ak. Cancel Help Spply

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Write

Block Board

Parameters Define the board used to send the CAN messages defined by this
block instance. For more information about the meaning of the
board number, see the Setup driver block described above. If just
one board is present in the target system, you should select 1.

Show status output port
Select this box to enable the status output port. If the box is
cleared, the block does not have an output port. If enabled, a port
1s shown. The signal leaving the block is a vector of type double in
which the number of elements depends on the signal dimension of
the block input port. There is one element for each CAN message
written into the transmit FIFO and the value is identical to the
return argument of function CANPC_send_data(...), described
in the Softing user manual. Refer to that manual for more
information. The function return codes are:

Code

Description

0

Function successful.

-1

Function unsuccessful.

-4

Timeout firmware communication.

-99

Board not initialized.

Sample time

Defines the sample time at which the FIFO Write block is
executed during a model (target application) run.

You can use as many instances of the FIFO Write block in the model
as needed. For example, by using two instances of the block, you can
send CAN messages at different sample times. Or you can use multiple
instances to structure your model more efficiently.

6-25

Softing CAN-AC2-PCI with Philips SJIA1000 FIFO Read

6-26

Purpose
Library

Description

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Read block
xPC Target Library for CAN

The FIFO Read driver block is used to read CAN messages from the
receive FIFO. The firmware running in FIFO mode puts received events
(CAN messages) into the receive FIFO from which the FIFO Read
driver reads it.

The FIFO Read driver block has at least one output port of type double.
The signal of this port is a matrix of size m*6, where m is the FIFO
Read depth defined in the block dialog box (see below). For example, if
the FIFO read depth is 5, then the matrix signal of port 1 has size 5%6.
Therefore, one row for each event is read out of the receive FIFO (no
new message is considered an event as well). For information on how to
extract data from the matrix signal, see “FIFO CAN Demonstrations”
on page 6-7.

Each row with its six elements contains all the information defining a
CAN message:

Port
The value can be either 1 (port 1) or 2 (port 2) and reports the port
at which the CAN message was received.

Identifier
Identifier of the CAN message being received. If it is a standard
CAN message the range 1s 0 to 2047. It is an extended CAN
message, the range is 0 to 22°-1.

Event type
This value defines the type of event read from the receive FIFO.
The following values are defined in the Softing user manual.

Events | Description

0 No new event.

1 Standard data frame received.

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Read

Events | Description

2 Standard remote frame received.

3 Transmission of a standard data frame is confirmed.

4

5 Change of bus state.

6

7

8 Transmission of a standard remote frame is
confirmed.

9 Extended data frame received.

10 Transmission of an extended data frame is
confirmed.

11 Transmission of an extended remote frame is
confirmed.

12 Extended remote frame received.

13

14

15 Error frame detected.

Data frame size
If a data frame has been received, the length of the data in bytes
is reported by this element. Possible values are 0 to 8.

Timestamp
Time at which the event was received. The resolution of the
timestamp counter is 1 us.

6-27

Softing CAN-AC2-PCI with Philips SJIA1000 FIFO Read

Data
Data of the data frame itself returned as a double value (8 bytes).
The CAN Unpacking block is used to extract the data from the
double value.

E! Source Block Parameters: FIFO Read il

—canac2poireadfifo [mazk] [link]

Softing
CAM-AC2-PCI
with S.0A1000

—Parameters

Board 2

FIFD read depth:
[

[~ Show status output paort

Sample time:
{0001
] Cancel Help
Block Board
Parameters Defines the board used to send the CAN messages defined by this

block instance. For more information about the meaning of the
board number, see the Setup driver block described above. If one
board is present in the target system, select board number 1.

FIFO read depth
Defines the number of receive FIFO read attempts. Each time
the block is executed it reads this fixed number of events (CAN
messages), which lead to a deterministic time behavior regardless
of the number of events currently stored in the receive FIFO. The

6-28

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Read

Read depth (m) also defines the size of the matrix signal (m*6)
leaving the first output port. If no event is currently stored in
the receive FIFO, the FIFO is read anyway, but the event type is
reported as 0 (no new event).

Show status output port
Select this box to enable the Status output port. If the box is
cleared (disabled), the block has one output port for the events. If
enabled, a second port is shown. The signal leaving that port is a
vector of type double with two elements:

[Number of lost messages (events), Bus state]

The first element returns the current value of the lost messages
counter. The receive FIFO can store up to 127 events. If the
receive FIFO is not regularly accessed for reading events, the
FIFO is filled and the lost messages counter starts to count up.
This is an indicator that events (messages) will be unavoidably
lost. The second element returns the current bus state. Possible
values are

Code | Description

0 Error active.
1 Error passive.
2 Bus off.

Sample time
Defines the sample time at which the FIFO Read block is executed
during a model (target application) run.

It is strongly recommended that you use only one instance of this block
per physical CAN board in your model. Otherwise, you might get the
unwanted behavior that one instance would read events that must be
processed by blocks connected to the other, second instance.

6-29

Sc;ﬂing CAN-AC2-PCl with Philips SJA1000 FIFO Read
Filter

6-30

Purpose
Library

Description

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Read Filter block
xPC Target Library for CAN

This is a utility block for the CAN FIFO driver block set, but does not
actually access the CAN board or any other hardware device. This block
is usually connected to the first output port of the FIFO Read driver
block and allows filtering events out of the event matrix, the signal
leaving the FIFO Read driver block.

The block code walks through the rows of the incoming event matrix
signal and looks for events matching the criteria defined in the block
dialog box. If it matches, the entire event information (row) is written to
the block’s first output port. If more than one row matches the criteria,
the later event overwrites the earlier event.

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Read
Filter

The block has one input port and two output ports. The input port is
of type double and accepts a matrix signal of size m*6. The two output
ports are of type double as well. The first output is a row vector (1*6),
the filtered event, and the second outputs a scalar value that reports
the number of matching events the filter block has processed.

=] Function Block Parameters: FIFO Read Filter x|

—anrcyvbifofilker [maszk] [link]

CAM
FIFO Read Filker

—Parameters

CAN port A

bezzage type command [SOF SRF EDF ERF EF ME CES):

kezzage type selection mu:u:le:l Exclude ;I
|dentifier=]:
[i
| dentifier selection mn:u:le:l Euclude ;I
0k, Cancel Help | Apply |
Block CAN port
Parameters Defines the filter criterion for the CAN port. From the list, select
Any, 1, or 2.

Message type command
Defines the filter criterion for the event types. This entry can
consist of a concatenation of space-delimited keywords that are

6-31

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Read

Filter

6-32

Keyword| Description

SDF Standard data frame.
SRF Standard remote frame.
EDF Extended data frame.
ERF Extended remote frame.
EF Error frame.

NE No new event.

CBS Change of bus state.

Message type selection mode
Defines how the event type (message type), from the Message
type command parameter, is treated. If you select Include, the
event type criterion is the sum of the concatenated keywords. If
you select Exclude, the event type criterion is equal to all event
types minus the sum of the concatenated keywords.

Identifier(s)

Defines the filter criterion for the CAN message identifiers. A set
of identifiers can be provided as a row vector.

Identifier selection mode
Defines how the identifier criterion, from the Identifier(s)
parameter, is treated. If you select Include, the identifier
criterion is the sum of all specified identifiers. If you select
Exclude, the identifier criterion is equal to all identifiers minus
the specified identifiers.

You can use as many instances of this block in your model as needed.
Usually, you connect several instances in parallel to the output of the
FIFO Read driver block to filter out particular messages or events. For
more information on how to do this, see “FIFO CAN Demonstrations”

on page 6-7.

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Read

XMT Level

Purpose

Library

Description

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Read XMT Level
block

xPC Target Library for CAN

The FIFO Read XMT Level driver block is used to read the current
number of CAN messages stored in the transmit FIFO to be processed
by the firmware. The transmit FIFO can store up to 31 messages. If it
is full and a FIFO write driver block tries to add another message to
the transmit FIFO, the passed messages are lost. You can use this
driver block to check for this condition and take appropriate action. For
example, you could stop the execution or wait for a non-full transmit

FIFO.

The block has a single output port of type double returning a scalar
value containing the current transmit FIFO level (number of messages
to be processed).

E Source Block Parameters: FIFO Read X il

—canacZreadsmtfifolevel [mazk] [link]

Softing
CAN-AC2-PCI
with SJA1000

—Parameterz

Board: =

Sample time:
f0.001

] Cancel Help

6-33

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Read
XMT Level

Block Board

Parameters Defines the board accessed to read the current transmit FIFO
level. For more information about the meaning of the board
number, see the Setup driver block described above. If just one
board is present in the target system, select board number 1.

Sample time
Defines the sample time at which the FIFO Read XMT Level
driver block is executed during a model (target application) run.

6-34

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Reset
XMT

Purpose
Library

Description

Block
Parameters

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Reset XMT block

xPC Target Library for CAN

The FIFO Reset XMT driver block is used to reset the transmit FIFOs.

This deletes all messages currently stored in the transmit FIFO and

reset the level counter to 0. As an example, you can use this driver block
to reset the transmit FIFO after having detected a fault condition.

The block has a single input port of type double. If a scalar value of 1 is
passed, the transmit FIFO is reset. If a scalar value of 0 is passed, no

action takes place.

E Sink Block Parameters: FIFO Reset XMT

—canacZrezetsmififo [maszk] [link]

Softing
CAN-AC2-PCI
with SJA1000

x|

—Parameterz

Sample time;

Board: =

{0,001

OE.

Cancel Help Spply

Board

Defines the board accessed to reset the transmit FIFO. For more
information about the meaning of the board number, see the
Setup driver block described above. If just one board is present in
the target system, select board number 1.

6-35

s‘a(c’)\:!;ng CAN-AC2-PCl with Philips SJA1000 FIFO Reset

Sample time
Defines the sample time at which the FIFO Reset XMT driver
block is executed during a model (target application) run.

6-36

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Read

RCV Level

Purpose

Library

Description

Block

Parameters

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Read RCV Level
block

xPC Target Library for CAN

The FIFO Read RCV level driver block reads the current number of
CAN messages stored in the receive FIFO. The receive FIFO can store
up to 127 events (messages). If it is full and no FIFO read driver block
attempts to read the stored events, new incoming events are lost, as
shown by the lost message counter incrementing. You can use this
driver block to check for this condition and take appropriate action,
such as stopping the execution or resetting the receive FIFO.

The block has a single output port of type double returning a scalar
value containing the current receive FIFO level (number of messages
to be processed).

E Source Block Parameters: FIFO Read RC il
—canacZreadroyvhifolevel [mazk] [link]

Softing

CAN-AC2-PCI

with SJA1000
—Parameters

Board -

Sample time:

f0.001

] Cancel Help
Board

Defines the board accessed to read the current receive FIFO level.
For more information about the meaning of the board number,

6-37

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Read
RCV Level

see the Setup driver block described above. If just one board is
present in the target system, select board number 1.

Sample time
Defines the sample time at which the FIFO Read RCV Level
driver block is executed during a model (target application) run.

6-38

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Reset

RCV

Purpose
Library

Description

Block
Parameters

Softing CAN-AC2-PCI with Philips SJA1000 FIFO Reset RCV block

xPC Target Library for CAN

The FIFO Reset RCV driver block resets the receive FIFO. This deletes

all messages currently stored in the receive FIFO and reset the level

counter to 0. As an example, you can use this driver block to reset the
receive FIFO after having detected a fault condition.

The block has a single input port of type double. If a scalar value of 1 is
passed, the transmit FIFO is reset. If a scalar value of 0 is passed, no

action takes place.

E Sink Block Parameters: FIFOD Reset RCY

—canacZrezetioviifo [maszk] [link]

Softing
CAN-AC2-PCI
with SJA1000

x|

—Parameterz

Sample time;

Board: =

{0,001

OE.

Cancel Help Spply

Board

Defines the board accessed to reset the receive FIFO. For more

information about the meaning of the board number, see the
Setup driver block described above. If just one board is present in
the target system, select board number 1.

6-39

Softing CAN-AC2-PCl with Philips SJA1000 FIFO Reset
RCV

Sample time
Defines the sample time at which the FIFO Reset RCV driver
block is executed during a model (target application) run.

6-40

CAN FIFO Blocks for the CAN-AC2-104 with Philips SJA1000 CAN Controller

CAN FIFO Blocks for the CAN-AC2-104 with Philips
SJA1000 CAN Controller

The driver blocks described here support the CAN-AC2-104 (PC/104) using
FIFO mode. The Philips SJA1000 chip is used as the CAN controller in this
configuration and supports both standard and extended identifier ranges in
parallel. The driver block set for this board is found in the xPC Target I/0
block library in the group CAN/Softing.

E!Lihrary: xpclib/CAN,/Softing - | I:Ilﬁl

File Edit “iew Format Help

o B

CAM-ACE-154 CAN-ACE-ISA CAMN-ACZ-PCI GAM-ACE-104
P hilip= G200 Intel 527 SJA 1000 SJA 1000

The fourth block group, CAN-AC2-104 SJA 1000, contains the FIFO Mode
subgroup.

6-41

6 caN I/O Support for FIFO

6-42

[C]Library: pclib/.../Softing/CAN-ACZ-
File Edit

Wiew Formab Help

=10 x|

CAN-AGE-104 B
CAN 1/ CANZ
Standar ! Extended

Setup

CAN-ACZ-T04 B1
0 CAN 1 - Send
Standamd 11bit

Send

CAN-ACE-104 B
CANM 1 - Receive u]
Standard 11bit

Rece ive

FIFZ hiode

CAN FIFO Blocks for the CAN-AC2-104 with Philips SJA1000 CAN Controller

The highlighted group contains all the driver blocks available for FIFO mode

CAN.

[ZILibrary: xpclib/.../CAN-AC2-104 S]A 1000,/FIFD Mode

File Edit Wiew Formab Help

=10l x|

GAN-ACE-104 B Fort: any F
FIFC: AR 1 FCAN 2 -
Standamrd ! Extended - k.
1]
FIFD Setup FIFZ2 Read Fiter
GAM-AGE-104 B GAM-AGE-104 B
FIFZ2 rade FIFZ rade [
Wi rite ZT FIFZ level
FIFC Wit FIFZ Read ZMT Lewvel
CAN-ASE-104 B CAN-ASE-104 B
FIFZ rode [FIFZ rode [
FRizad RZY FIFD kevel
FIFZ Read FIFZ Read RSV Lewel

CAN-ACE-104 B
FIFZ rmiade
Resat 30T FIFD

FIFD Rasat T

CAN-ACZ-104 B
FIFZ mode
Rasat RCYW FIFD

FIFD Rasat RCW

6-43

Softing CAN-AC2-104 with Philips SJA1000 FIFO Setup

Purpose Softing CAN-AC2-104 with Philips SJA1000 FIFO Setup block
Librclry xPC Target Library for CAN
Description The FIFO Setup driver block defines general settings of the installed

CAN boards. The CAN driver blocks for this board support up to three
boards for each target system, making up to six CAN ports available.
For each board in the target system, you must use exactly one Setup
driver block.

6-44

Softing CAN-AC2-104 with Philips SJA1000 FIFO Setup

E Block Parameters: FIFO Setup el

—canacd1 04zetupfifo [mazk] [link]

Softing
CaM-aC2-104
with 547000
—Parameters
Boarct [- |
CAN 1 - baud rate: | 1 MBaud [
CAM 1 - uger defined baud rate:
[[1.1.4.3]
CAM 1 - acceptance [Stdk azk, StdCode, Exthd azk, ExtCode]:
f[0.0.0.0
CAN 2- baud rate: | 1 MBaud [
CaN 2 - uger defined baud rate:
[[1.1.43]
CAM 2 - acceptance [Stdk azk, StdCode, Exthd azk, ExtCode]:
f[0.0.0.0

[™ Enable error frame detection
Initialization command structure:
In

Termninatior:

In

[/0 base address:

4200

temory baze address:
|0xdonoo

Interrupt line: | Maone LI

0k LCancel Help | Apply |

6-45

Softing CAN-AC2-104 with Philips SJA1000 FIFO Setup
|

Block Board

Parameters Defines the board accessed by this driver block instance. If
multiple boards are present in the target PC, you can use the
board number (1...3) to differentiate the boards. The physical
board referenced by the board number depends on the PCI Slot
parameter.

CAN 1 - baud rate
Defines the most common baud rates for CAN port 1. If special
timing is necessary (baud rate), you can select User defined.

CAN 1 - user defined baud rate
If you selected User defined from the CAN 1 - baud rate list,
enter four values for the timing information. The vector elements
have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

CAN 1 - acceptance
Defines the acceptance filters for CAN port 1. Because the receive
FIFO is filled with any CAN messages going over the bus, the
use of the CAN controller acceptance filters becomes important
to filter out unwanted messages already at the controller level.
This acceptance filter information is provided by a row vector
with four elements in which the first two are used to define the
acceptance mask and acceptance code for standard identifiers
and the latter two for extended identifiers. The default value
defined by the Setup block does not filter out any messages. For
information on how to define the acceptance information to filter
certain messages, see “Acceptance Filters” on page 6-9.

CAN 2 - baud rate
Defines the most common baud rates for CAN port 2. If special
timing is necessary (baud rate), you can select User defined.

6-46

Softing CAN-AC2-104 with Philips SJA1000 FIFO Setup

CAN 2- user defined baud rate
If you selected User defined from the CAN 1 - baud rate list,
enter four values for the timing information. The vector elements
have the following meanings:

[Prescaler, Synchronization-Jump-Width, Time-Segment-1,
Time-Segment-2]

For more information about these values, see the Softing user
manual for this board.

CAN 2 acceptance
Defines the acceptance filters for CAN port 2. Because the receive
FIFO is filled with any CAN messages going over the bus, the
use of the CAN controller acceptance filters becomes important
to filter out unwanted messages already at the controller level.
This acceptance filter information is provided by a row vector
with four elements in which the first two are used to define the
acceptance mask and acceptance code for standard identifiers
and the latter two for extended identifiers. The default value
defined by the Setup block does not filter out any messages. For
information on how to define the acceptance information to filter
certain messages, see “Acceptance Filters” on page 6-9.

Enable error frame detection
Defines whether the CAN controller should detect error frames
and forward these to the receive FIFO. Selecting this box
makes sense for monitoring applications where you want to be
informed about all events going over the bus. For low-latency
time applications, selecting this box might increase the FIFO
Read driver block latency, because the receive FIFO is filled with
additional events.

Initialization command structure and Termination
Defines CAN messages sent during initialization and termination
of the Setup block. For more information, see the standard CAN
driver documentation in “Defining Initialization and Termination
CAN Messages” on page 5-10 in the Chapter 5, “CAN I/O Support”
chapter.

6-47

Softing CAN-AC2-104 with Philips SJA1000 FIFO Setup

6-48

Termination

Defines CAN messages sent during termination of the Setup
block. For more information, see the standard CAN driver
documentation in “Defining Initialization and Termination CAN
Messages” on page 5-10 in the Chapter 5, “CAN I/O Support”
chapter.

I/0 base address

Defines the I/0 base address of the board to be accessed by this
block instance. The I/0 base address is given by the DIP switch
setting on the board itself. The I/O address range is 3 bytes and
1s mainly used to identify the memory base address the board
should use. See the Softing user manual for this board on how
you can set the I/O base address. The I/0 base address entered in
this control must correspond with the DIP switch setting on the
board. If more than one board is present in the target system, you
must enter a different I/0 base address for each board. In this
case, the I/0 base address itself defines which board is referenced
by which board number.

Memory base address

Defines the memory base address of the board to be accessed

by this block instance. The memory base address is a software
setting only (no corresponding DIP switch is found on the board).
The memory address range is 4 KB. If more than one board is
present in the target system, you must enter a different memory
base address for each board and you must ensure that the defined
address ranges do not overlap. Because the xPC Target kernel
only reserves a subset of the address range between 64 KB and

1 MB for memory-mapped devices, the address ranges must be
within the following range:

C8000 - D8000

The board allows you to terminate each of the two CAN ports
separately by means of DIP switches at the back panel of the
board. Refer to the Softing user manual on how to set the DIP

Softing CAN-AC2-104 with Philips SJA1000 FIFO Setup
|

switches. Both CAN ports must be properly terminated before you
can use the loop-back model provided to test the board and drivers.

Interrupt line
Select an interrupt line from the list.

6-49

Softing CAN-AC2-104 with Philips SJA1000 FIFO Write

Purpose Softing CAN-AC2-104 with Philips SJA1000 FIFO Write block
Librclry xPC Target Library for CAN
Description The FIFO Write driver block is used to write CAN messages into the

transmit FIFO. The firmware running in FIFO mode then processes the
information found in the transmit FIFO and finally puts the constructed
CAN messages onto the bus.

The block has one input port of type double. At this port, you must
provide all necessary needed to construct valid CAN messages to be
written into the transmit FIFO. For each CAN message, five elements
have to be passed:

Port
The value can be either 1 (port 1) or 2 (port 2) and defines at
which port the CAN message is sent from.

Identifier
Identifier of the CAN message to be sent. If it is a standard CAN
message, the valid range is 0 to 2047. If extended, the range is
0 to 22°-1.

Identifier type
The value can be either 0 (standard identifier range) or 1
(extended identifier range) and defines the identifier type of the
outgoing CAN message.

Data frame size
The value can be in the range of 0 to 8 and defines the data frame
size in bytes of the outgoing CAN message

Data
Data for the data frame itself, defined as a double value (8 bytes).
The CAN Packing block is used to construct the data as a double
value.

Because all this information can be dynamically changed in FIFO mode
during application execution, the information is provided at the block

6-50

Softing CAN-AC2-104 with Philips SJA1000 FIFO Write
|

input instead of using the block parameters. To transmit more than one
CAN message per block instance, use a matrix signal as a container
for all information.

The dimension of the matrix signal entering the block must be n*5,
where n is the number of CAN messages to be sent by this block
instance. Therefore, each row of the matrix signal defines one CAN
message and each row combines the five elements of information
defined above (in this order).

For more information on how to construct the correct matrix signal for
the FIFO write block, see “FIFO CAN Demonstrations” on page 6-7.

For certain applications it might be necessary to make the writing
of a CAN message into the transmit FIFO dependent on the model
dynamics. For this, the matrix signal can also be of dimension n*6
instead of n*5. In this case, the sixth column defines whether the
corresponding CAN message is written into the transmit FIFO (value
1) or not (value 0).

[=] sink Block Parameters: FIFD Write x|

—anac] Odwritefifo [mazk] (link]

Safting
CaM-AC2-104
with S.0A1000

—Parameters

Board 7

[T Show status output port

Sample tirme:
{0001

ak. Cancel Help Spply

6-51

Softing CAN-AC2-104 with Philips SJA1000 FIFO Write

Block Board

Parameters Defines the board used to send the CAN messages defined by this
block instance. For more information about the meaning of the
board number, see the Setup driver block described above. If just
one board is present in the target system, select board number 1.

Show status output port
Selecting this check box lets you enable the Status output port. If
the box is cleared (disabled), the block does not have an output
port. If enabled, a port is shown. The signal leaving the block is a
vector of type double in which the number of elements depends
on the signal dimension of the block input port. There is one
element for each CAN message written into the transmit FIFO
and the value is identical to the return argument of function
CANPC_send_data(...), described in the Softing user manual.
Refer to that manual for more information. The function return
codes are:

Code| Description

0 Function successful.
-1 Function unsuccessful.
-4 Timeout firmware communication.

-99 Board not initialized.

Sample time
Defines the sample time at which the FIFO Write block is
executed during a model (target application) run.

You can use as many instances of the FIFO Write block in the model as
needed. For example, by using two instances of the block with different
sample times, you can send CAN messages out at different rates. Or

you can use multiple instances to structure your model more efficiently.

6-52

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read

Purpose
Library

Description

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read block
xPC Target Library for CAN

The FIFO Read driver block reads CAN messages from the receive
FIFO. The firmware running in FIFO mode puts received events (CAN
messages) into the receive FIFO. From here, the FIFO Read driver
reads the events out. The receive FIFO can store up to 127 events
(messages). If it is full and no FIFO Read driver block attempts to read
the stored events, new incoming events are lost. This is reflected by the
incrementing of the lost message counter. You can use the FIFO Read
RCV Level driver block to check for this condition and take appropriate

action (for example, like stopping the execution or resetting the receive
FIFO).

The FIFO Read driver block has at least one output port of type double.
The signal of this port is a matrix of size m*6, where m is the FIFO read
depth defined in the block’s dialog box (see below). For example, if the
FIFO read depth is 5, the matrix signal of port 1 has size 5*6. Therefore,
there is one row for each event read from the receive FIFO (no new
message is considered as an event as well). For information on how to
extract data from the matrix signal, see “FIFO CAN Demonstrations”
on page 6-7.

Each row with its six elements contains all the information defining a
CAN message:

Port
The value is either 1 (port 1) or 2 (port 2) and reports the port at
which the CAN message was received.

Identifier
Identifier of the CAN message being received. If it is a standard
CAN message, the range is 0 to 2047. If the CAN message is
extended, the range is 0 to 22°-1.

Event type
Defines the type of event read from the receive FIFO. The
following values are defined from the Softing user manual:

6-53

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read

Events

Description

16

No new event.

17

Standard data frame received.

18

Standard remote frame received.

19

Transmission of a standard data frame is confirmed.

20

21

Change of bus state.

22

23

24

Transmission of a standard remote frame is
confirmed.

25

Extended data frame received.

26

Transmission of an extended data frame is
confirmed.

27

Transmission of an extended remote frame is
confirmed.

28

Extended remote frame received.

29

30

31

Error frame detected.

Data frame size

If a data frame has been received, the length of the data in bytes
is reported by this element. Possible values are 0 to 8.

Timestamp

Reports the time at which the event was received. The resolution
of the timestamp counter is 1Hs.

6-54

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read

Data
Data of the data frame itself. It is returned as a double value
(8 bytes). The CAN Unpacking block is used to extract the data
from the double value.

E! Source Block Parameters: FIFO Read il

—canaca10dreadfifo [mazk] [link]

Softing
CaM-AC2-104
with S.0A1000

—Parameters

Board 2

FIFD read depth:
[

[~ Show status output paort

Sample time:
{0001
] Cancel Help
Block Board
Parameters Defines the board to use to send the CAN messages defined by this

block instance. For more information about the meaning of the
board number, see the Setup driver block described above. If just
one board is present in the target system, select board number 1.

FIFO read depth
Defines the number of receive FIFO read attempts. Each time
the block is executed, it reads this fixed number of events
(CAN messages), which leads to a deterministic time behavior
independent of the number of events currently stored in the

6-55

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read

6-56

receive FIFO. The read depth (m) also defines the size of the
matrix signal (m*6) leaving the first output port. If no event is
currently stored in the receive FIFO, the FIFO is read anyway but
the event type is reported as 0 (no new event).

Show status output port
Lets you enable the status output port. If the box is cleared
(disabled), the block has one output port for events. If enabled, a
second port 1s shown. The signal leaving that port is a vector of
type double with two elements:

[Number of lost messages (events), Bus state]

The first element returns the current value of the lost messages
counter. The receive FIFO can store up to 127 events. If the
receive FIFO is not regularly accessed for reading events, the
FIFO is filled and the lost messages counter starts to increment.
This is an indicator that events (messages) will be unavoidably
lost. The second element returns the current bus state. Possible
values are

Code | Description

3 Error active
4 Error passive
5 Bus off

Sample time
Defines the sample time at which the FIFO Read block is executed
during a model (target application) run.

Only use one instance of this block per physical CAN board in your
model. Otherwise you may get unwanted behavior when one instance
reads events while the events are being processed by blocks connected
to the other, second instance.

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read

Filter

Purpose
Library

Description

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read Filter Block
xPC Target Library for CAN

This is a utility block for the CAN FIFO driver block set, but does not
actually access the CAN board or any other hardware device. This block
is usually connected to the first output port of the FIFO Read driver
block. It allows filtering events from the event matrix, which is the
signal leaving the FIFO Read driver block.

The block code walks through the rows of the incoming event matrix
signal and looks for matching events according to the criteria defined in
the block’s dialog box. If match is found, the entire event information
(row) is written to the block’s first output port. If more than one row
matches the criteria, the later event overwrites the earlier event.

The block has one input port and two output ports. The input port is
of type double and accepts a matrix signal of size m*6. The two output
ports are of type double as well. The first output is a row vector (1*6),
the filtered event. The second output is a scalar value that reports the
number of matching events the filter block has processed.

6-57

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read
Filter

6-58

Block
Parameters

=] Function Block Parameters: FIFO Read Filter x|

—anrcyvbifofilker [maszk] [link]

CAM
FIFO Read Filker

—Parameters

CAN port A

bezzage type command [SOF SRF EDF ERF EF ME CES):

kezzage type selection mu:u:le:l Exclude ;I

|dentifier=]:
[i

|dentifier zelection mn:u:le:l Exciude ;I

0k, Cancel Help | Apply

The dialog box of the FIFO Read Filter block lets you define the
following settings:

CAN port
Defines the filter criterion for the CAN port. Possible choices are
Any, 1, or 2.

Message type command
Defines the filter criterion for the event types. This entry can
consist of a concatenation of space-delimited keywords:

Keyword | Description

SDF Standard data frame.

SRF Standard remote frame.

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read
Filter

Keyword | Description

EDF Extended data frame.
ERF Extended remote frame.
EF Error frame.

NE No new event.

CBS Change of bus state.

Message type selection mode
Defines how the event type (message type) listed in Message
type command is treated. If you select Include, the event type
criterion is the sum of the concatenated keywords. If you select
Exclude, the event type criterion is equal to all event types minus
the sum of the concatenated keywords.

Identifier(s)
Defines the filter criterion for the CAN message identifiers. A set
of identifiers can be provided as a row vector.

Identifier selection mode
Defines how the identifier criterion entered in the Identifier(s)
parameter is treated. If you select Include, the identifier criterion
is the sum of all specified identifiers. If you select Exclude, the
identifier criterion is equal to all identifiers minus the specified
identifiers.

You can use as many instances of this block in your model as needed.
Usually, you connect several instances in parallel to the output of the
FIFO Read driver block to filter out particular messages or events. For
more information on how to do this, see “FIFO CAN Demonstrations”
on page 6-7.

6-59

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read
XMT Level

Purpose Softing CAN-AC2-104 with Philips SJA1000 FIFO Read XMT Level
block
Library xPC Target Library for CAN

Description The FIFO Read XMT Level driver block is used to read the current
number of CAN messages stored in the transmit FIFO to be processed
by the firmware. The transmit FIFO can store up to 31 messages. If it
is full and a FIFO write driver block tries to add another message to
the transmit FIFO, the passed messages are lost. You can use this
driver block to check for this condition and take appropriate action. For
example, you can stop the execution or wait for the transmit FIFO to
empty.

The block has a single output port of type double returning a scalar
value containing the current transmit FIFO level (number of messages
to be processed).

E Source Block Parameters: FIFO Read X il

—canacZreadsmtfifolevel [mazk] [link]

Softing
CAN-AC2-104
with SJA1000

—Parameterz

Board: =

Sample time:
f0.001

] Cancel Help

6-60

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read
XMT Level

Block Board

Parameters Defines the board to access to read the current transmit FIFO
level. For more information about the meaning of the board
number, see the Setup driver block described above. If just one
board is present in the target system, select board number 1.

Sample time
Defines the sample time at which the FIFO Read XMT Level
driver block is executed during a model (target application) run.

6-61

Softing CAN-AC2-104 with Philips SJA1000 FIFO Reset
XMT

Purpose Softing CAN-AC2-104 with Philips SJA1000 FIFO Reset XMT block
Library xPC Target Library for CAN

Description The FIFO Reset XMT driver block resets the transmit FIFO. This
deletes all messages currently stored in the transmit FIFO and resets
the level counter to 0. For example, you can use this driver block to
reset the transmit FIFO after detecting a fault condition.

The block has a single input port of type double. If a scalar value of 1 is
passed, the transmit FIFO is reset; if 0 is passed, no action takes place.

E Sink Block Parameters: FIFO Reset XMT il

—canacZrezetsmififo [maszk] [link]

Softing
CAN-AC2-104
with SJA1000

—Parameterz

Board: =

Sample time;
{0,001

0k, Cancel Help Spply

Block Board

Parameters Defines the board to access to reset the transmit FIFO. For more
information about the meaning of the board number, see the
Setup driver block described above. If just one board is present in
the target system, select board number 1.

6-62

Softing CAN-AC2-104 with Philips SJA1000 FIFO Reset
XMT

Sample time
Defines the sample time at which the FIFO Reset XMT driver
block is executed during a model (target application) run.

6-63

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read
RCV Level

Purpose Softing CAN-AC2-104 with Philips SJA1000 FIFO Read RCV Level
block
Librclry xPC Target Library for CAN

Description The FIFO Read RCV Level driver block reads the current number of
CAN messages stored in the receive FIFO. The receive FIFO can store
up to 127 events (messages). If it is full and no FIFO Read driver block
attempts to read the stored events, new incoming events are lost. This is
reflected by the incrementing of the lost message counter. You can use
this driver block to check for this condition and take appropriate action
(for example, like stopping the execution or resetting the receive FIFO).

The block has a single output port of type double returning a scalar
value containing the current receive FIFO level (number of messages
to be processed).

E Source Block Parameters: FIFO Read RC il
—canacZreadroyvhifolevel [mazk] [link]
Softing
CAN-AC2-104
with SJA1000
—Parameters
Boardt -
Sample time:
f0.001
] Cancel Help
Block Board
Parameters Defines the board to access to read the current receive FIFO level.

For more information about the meaning of the board number,

6-64

Softing CAN-AC2-104 with Philips SJA1000 FIFO Read
RCV Level

see the Setup driver block described above. If just one board is
present in the target system, select board number 1.

Sample time
Defines the sample time at which the FIFO Read RCV Level
driver block is executed during a model (target application) run.

6-65

Softing CAN-AC2-104 with Philips SJA1000 FIFO Reset
RCV

Purpose Softing CAN-AC2-104 with Philips SJA1000 FIFO Reset RCV block
Library xPC Target Library for CAN

Description The FIFO Reset RCV driver block resets the receive FIFO. This deletes
all messages currently stored in the receive FIFO and resets the level
counter to 0. For example, you can use this driver block to reset the
receive FIFO after detecting a fault condition.

The block has a single input port of type double. If a scalar value of 1 is
passed, the transmit FIFO is reset; if 0 is passed no action takes place.

E Sink Block Parameters: FIFO Reset RCY 1 il

—canacZrezetioviifo [maszk] [link]

Softing
CAN-AC2-104
with SJA1000

—Parameterz

Board: =

Sample time;
{0,001

0k, Cancel Help Spply

Block Board

Parameters Defines the board to access to reset the receive FIFO. For more
information about the meaning of the board number, see the
Setup driver block described above. If just one board is present in
the target system, select board number 1.

6-66

Softing CAN-AC2-104 with Philips SJA1000 FIFO Rescei'
RCV

Sample time
Defines the sample time at which the FIFO Reset RCV driver
block is executed during a model (target application) run.

6-67

Softing CAN-AC2-104 with Philips SJA1000 FIFO Reset
RCV

6-68

Model-Based Ethernet
Communications Support

¢ “Model-Based Ethernet Communications” on page 7-2

¢ “xPC Target Demonstrations for Model-Based Ethernet Communications”
on page 7-6

® “Blocks — Alphabetical List” on page 7-7

7 Model-Based Ethernet Communications Support

Model-Based Ethernet Communications

In this section...

“What Is Model-Based Ethernet Communications?” on page 7-2
“PCI Bus and Slot Numbers” on page 7-2

“MAC Addresses” on page 7-3

“Network Buffer Pointers” on page 7-4

“Filter Type and Filter Address Blocks” on page 7-4

“xPC Target Ethernet Block Library” on page 7-4

What Is Model-Based Ethernet Communications?

The xPC Target software supports communication from the target PC to other
systems or devices using raw Ethernet (Ethernet packets). Raw Ethernet

is a direct method to send and receive packets with the target application
using the Ethernet protocol. To transfer data using Ethernet packets, you
must manually create Ethernet frames. This topic assumes that you are
knowledgeable about the Ethernet standard 802.3 standard.

Before you start, ensure that you have a dedicated Ethernet card on your
target PC. A dedicated Ethernet card is to be used only for model-based
Ethernet communications and not for communication between the host PC
and target PC. This requirement means that your target PC must have at least
two Ethernet cards, one for host PC to target PC communications, and one for
model-based Ethernet communication. The xPC Target software model-based
Ethernet communication blocks support the Intel 8255X chip family.

PCl Bus and Slot Numbers

To use the model-based Ethernet blocks, specify the PCI bus and slot number
of the dedicated Ethernet card in the Ethernet Init block. To identify which
Ethernet card is available:

1 Boot the target PC with which you want to perform model-based Ethernet
communications.

Model-Based Ethernet Communications

2 Examine the startup screen on the target PC. Note the PCI bus and slot
information on the bottom right of the display. For example, this Ethernet
card is located on PCI bus 3, slot 10. This Ethernet card is installed on the
target PC for dedicated communication between the host PC and target PC.

none
1811ME
loader

Eystem: Host-Target Interface is TCPASIP (Ethernet)

3 In the MATLAB Command Window, type
getxpcpci('all')
This command determines which PCI boards are installed in the target PC.
4 Examine the list of PCI boards and look for the Ethernet cards.

5 In the list, find the Intel 8255X Ethernet card that is not in the bus and slot
displayed on the target PC monitor.

6 Note the PCI bus and slot of the free Intel 8255X Ethernet card. This will be
the Ethernet card you can use for model-based Ethernet communications.

MAC Addresses

A number of the Ethernet blocks require you to enter MAC addresses. The
MAC address must be vector-based. To obtain the vector-based version

of a MAC address, use the macaddr command. This command converts a
string-based MAC address to a vector-based one. For example:

macaddr('01:23:45:67:89:ab"')
[1 35 69 103 137 171]

When an Ethernet block requires a MAC address, you can enter either of the
following in the address field:

¢ Command macaddr('MAC address string'), for example:

7 Model-Based Ethernet Communications Support

macaddr('01:23:45:67:89:ab"')

® Vector-based output from the macaddr command, for example:

[1 35 69 103 137 171]

Network Buffer Pointers

The xPC Target Ethernet block library uses pointers to refer to network
buffers. Blocks can pass pointers to these buffers as single uint32pointers.
They can also refer to a chain of network buffer packets.

Filter Type and Filter Address Blocks

The Filter Type and Filter Address blocks accept a chain of network buffers
as input. Based on the criteria specified in the masks of these blocks, the
drivers parse each buffer on the chain and either pass the packets through the
appropriate port or drop the packets. When using these blocks, create your
models to filter appropriately to ensure that your model works only with data
from packets from expected sources.

xPC Target Ethernet Block Library

To access the xPC Target Ethernet library blocks, in the xPC Target block
library, double-click Ethernet. The xPC Target Ethernet library is displayed.

Model-Based Ethernet Communications

E!Lihrary:upcethernetlih &

File Edit Wwew Format Help
Ethernet
Initialization Hetmard Buffer E}—
- 1 Management
Ethernet Init Buffer Mngmt Netwatk Buffers
Ethernet Dat Datap
Transmit atd L=t [
1d: 1 Create Ethernet P adiet Extract Ethemet Pad(E{St
Metwok Buffer = Networ Buffer Srof
Ethernet Tx Length Type b
Ethermet Length &
Recaive . Create Ethernet Facket
1d: 1 Extract Ethernet Facket
Ethernet R
L Bufferf
. Ethernet dstp
Filter Filter Header s
EtherType MAL Address Extract type b
- len [
Filter Type Filtar Address Header Extract

Ready

|100% |Locked

A

The xPC Target Ethernet library contains commonly used Ethernet blocks at
the top level of the library. Use these blocks to create your models.

The Ethernet library also has a sublibrary, Network Buffers, which contains
blocks specific to the management of Ethernet network buffers. The blocks
in this sublibrary are core blocks that you might want to use to create
other subsystems. However, the top-level Ethernet blocks are sufficient

for model-based Ethernet communications. See Chapter 8, “Network
Buffer Library for Model-Based Ethernet Communications Support” for an
alphabetical list of network buffer blocks.

7-5

7 Model-Based Ethernet Communications Support

7-6

xPC Target Demonstrations for Model-Based Ethernet

Communications

The xPC Target demos directory contains the following demos that illustrate
the use of model-based Ethernet communications.

Demo

Description

Real-Time Transmit and Receive
over Ethernet

Demonstrates how to perform real-time
communications over the Ethernet
protocol.

Filtering on MAC Address

Demonstrates how to filter Ethernet
packets based on MAC addresses.

Filtering on EtherType

Demonstrates how to filter Ethernet
packets based on EtherTypes.

Blocks — Alphabetical List

Blocks — Alphabetical List

Buffer Mngmt

Create Ethernet Packet
Ethernet Init

Ethernet Rx

Ethernet Tx

Extract Ethernet Packet
Filter Address

Filter Type

Header Extract

7-7

Buffer Mngmt

Purpose Buffer Mngmt block

Librclry xPC Target Library for Ethernet

Description Use the Buffer Mngmt block to initialize network buffers.
Block This block has two tabs, Main and Advanced.

Parameters .. (.1

Sample time
Base sample time or a multiple of the base sample time.

Advanced tab. You do not normally need to modify the values of the
parameters in this tab. Changing the values of these parameters can
affect the performance of your system.

Buffer pool sizes (256, 512, 1024, 2048)
Enter a vector of the number of buffers for each pool size (256,
512, 1024, 20438).

Display tuning information
Select this check box to enable a display of statistical data
collected during the run of the model.

7-8

Create Ethernet Packet

Purpose
Library
Description

Block
Parameters

Create Ethernet Packet block
xPC Target Library for Ethernet

Use the Create Ethernet Packet block to create the Ethernet packets
that you want to transfer.

Destination MAC
Enter the MAC address of the target PC to receive the data.

EtherType (use 0 for length)
Enter a value to represent either the EtherType or the length that
the Ethernet frame is to transfer.

¢ EtherType

If you are working with Ethernet packets that use EtherType
values, enter an EtherType value to specify which prototype
the Ethernet frame will transfer. This value must be a valid
EtherType.

¢ Ethernet length

If you are working with Ethernet packets that use Ethernet
lengths, enter 0.

7-9

Ethernet Init

Purpose
Library

Description

Block
Parameters

7-10

Ethernet Init block
xPC Target Library for Ethernet

Use the Ethernet Init block to initialize the Ethernet communication
channel.

You must use an Ethernet Init block for each Ethernet board.

This block has three tabs, Device, Address, and Advanced.

Device tab

ID
From the list, select a unique number to identify the board across
multiple blocks. The Ethernet Tx and Ethernet Rx blocks use this
ID to associate with the correct Ethernet board.

PCI bus
Enter the PCI bus number of the Ethernet card that you will use
for model-based communications.

PCI slot
Enter the PCI slot number of the Ethernet card that you will use
for model-based communications.

Addressing tab
Address Source
From the list, select:

® EEPROM

Allow the block to get the Ethernet card MAC address that is
built into the Ethernet card.

® Specify

Enable the MAC parameter so that you can manually enter a
MAC address for the Ethernet card.

Ethernet Init

MAC
Enter the MAC address for the Ethernet card. This parameter is
enabled if you select Specify for the Address source parameter.

Rx Promiscuous
Select this check box to direct the model to receive all packets
regardless of their destination address.

Advanced tab. You do not normally need to modify the values of the
parameters in this tab. Changing the values of these parameters can
affect the performance of your system.

Rx Bad Frames
Select this check box to direct the model to receive all packets,
including erroneous ones (such as CRC error, alignment error,
and so forth).

Rx Short Frames
Select this check box to direct the model to receive all packets,
including frames that are less than 64 bytes in length.

Max MTU
Specify a maximum transmission unit number. This parameter
allows you to specify a smaller maximum transmission unit
number. The default is 1518.

Tx Threshold
Enter a value to control when the Ethernet device will begin to
perform direct memory access (DMA) on packets from memory.
The default is 224. Before you change this parameter, see the
Intel 8255x 10/ 100 Mbps Ethernet Controller Family — Open
Source Software Developer Manual.

Tx Buffers
Enter the maximum number of buffers to hold in the queue before
the driver is to drop new transmit requests. The default is 128.

Rx Buffers
Enter the maximum number of buffers to hold in the queue before
the driver is to drop new receive packets. The default is 64.

7-11

Ethernet Init

Display tuning information
Select this check box to enable a display of statistical data
collected during the run of the model.

7-12

Ethernet Rx

Purpose
Library
Description

Block
Parameters

Ethernet Rx block
xPC Target Library for Ethernet
Use the Ethernet Rx block to receive Ethernet packets.

ID
From the list, select a unique number (from 1 to 8) to identify the
board across multiple blocks. This is the same ID as was specified
in the Ethernet Init ID parameter. The Ethernet Rx block uses
this ID to associate with the correct Ethernet board.

Sample time
Base sample time or a multiple of the base sample time.

7-13

Ethernet Tx

7-14

Purpose
Library
Description

Block
Parameters

Ethernet Tx block
xPC Target Library for Ethernet
Use the Ethernet Tx block to send network packets.

ID
From the list, select a unique number (from 1 to 8) to identify the
board across multiple blocks. This is the same ID as was specified
in the Ethernet Init ID parameter. The Ethernet Tx block uses
this ID to associate with the correct Ethernet board.

Sample time
Base sample time or a multiple of the base sample time.

Extract Ethernet Packet

Library xPC Target Library for Ethernet

Description Use the Extract Ethernet Packet block to extract data from an Ethernet
packet.

Block Data Size

Parameters Enter the data size (in bytes) for the data you want to extract

from an Ethernet packet.

7-15

Filter Address

Purpose Filter Address block
Librclry xPC Target Library for Ethernet
Description Use the Filter Address block to filter network buffer packets, using their

MAC addresses as the sort criteria. See “Filter Type and Filter Address
Blocks” on page 7-4 for cautions on setting the parameters for this block.

Block MAC Address
Parameters Enter a cell array of the MAC address for the filter.

Drop non-matches
Select this check box to discard packets whose MAC addresses do
not match any of those entered in the parameter MAC Address.

Clear this check box to direct the block to output packets whose
MAC addresses do not match any of those entered in the MAC
Address parameter.

Filter on destination address
Clear this check box (default) to direct the block to filter addresses
for the source address.

Select this check box to direct the block to filter addresses for
the destination address.

7-16

Filter Type

Purpose
Library

Description

Block
Parameters

Filter Type block
xPC Target Library for Ethernet

Use the Filter Type block to filter network buffer packets, using their
EtherType values as the sort criteria. See “Filter Type and Filter
Address Blocks” on page 7-4 for cautions on setting the parameters for
this block.

Match Length (1-1500)
Select this check box to match packets whose EtherType values
fall within the range 1 to 1500.

EtherType
Enter a space delimited list of EtherTypes that you want to filter
upon.

Drop non-matches
Clear this check box (default) to direct the block to output packets
whose EtherTypes or Ethernet lengths do not match any of those
entered in the parameter EtherType.

Select this check box to direct the block to discard packets whose

EtherTypes or Ethernet lengths do not match any of those entered
in the parameter EtherType.

7-17

Header Extract

Purpose Header Extract block
Librclry xPC Target Library for Ethernet
Description Use the Header Extract block to extract the header data of network

buffer packets.

7-18

Network Buffer Library
for Model-Based Ethernet

Communications Support

¢ “Network Buffer Blocks” on page 8-2
® “Blocks — Alphabetical List” on page 8-3

8 Network Buffer Library for Model-Based Ethernet Communications Support

Network Buffer Blocks

The Ethernet library has a sublibrary, Network Buffers, which contains
blocks specific to the management of Ethernet network buffers. The blocks
in this sublibrary are core blocks that you might want to use to create
other subsystems. However, the top-level Ethernet blocks are sufficient for
model-based Ethernet communications.

[Library:xpcnetworkbufferlib * -0 x|

File Edit “iew Formab Help

]=] HB HE B
MNetmwok Buffer herge Split F h -
Link Unlink
Management -
3 [
e
Buffar Mngmt
herge Split - -
Link Unlink
MB
HB Compozse Buffering Ak
b
length a
Compose Buffer
ND Estract | we I
length p Chain Eiizz: L
Buctract Chain Size
Ready [100%, [Locked 4

8-2

Blocks — Alphabetical List

Blocks — Alphabetical List

Buffer

Buffer Mngmt
Chain Size
Compose
Extract

Link

Merge

Split

Unlink

8-3

Buffer

Purpose
Library
Description

Block
Parameters

Ethernet Buffer block

xPC Target Library for Ethernet

Use the Buffer block to queue up buffers.

Chain size

Specify the queuing (output) behavior of the block as packets are

received.
Value Description
inf Pass through all packets. No queuing occurs.
0 No packets are passed through.
Positive Pass through the first N packets.
number, N
Negative Pass through the last N packets.
number, N

Buffer size

Specify the buffering behavior of the block as packets are received.

Value Description

inf Buffer all remaining packets. No packets are
deleted.

0 Do not buffer any packets. All remaining packets
are deleted.

Positive Buffer the remaining first N packets.

number, N

Negative Buffer the remaining last N packets.

number, N

Buffer Mngmt

Purpose
Library
Description

Block
Parameters

Buffer Mngmt block
xPC Target Library for Ethernet
Use the Buffer Mngmt block to initialize network buffers.

This block has two tabs, Main and Advanced.
Main tab

Sample time
Base sample time or a multiple of the base sample time.

Advanced tab. You do not normally need to modify the values of the
parameters in this tab. Changing the values of these parameters can
affect the performance of your system.

Buffer pool sizes (256, 512, 1024, 2048)
Enter a vector of the number of buffers for each pool size (256,
512, 1024, 20438).

Display tuning information
Select this check box to enable a display of statistical data
collected during the run of the model.

8-5

Chain Size

Purpose Chain Size block
Librclry xPC Target Library for Ethernet
Description Use the Chain Size block to determine the number of buffers that are

on the chain.

8-6

Compose

Purpose
Library

Description

Compose block
xPC Target Library for Ethernet

Use the Compose block to create a network buffer. This block creates a
pointer to a network buffer.

8-7

Extract

8-8

Purpose
Library
Description

Block
Parameters

Extract block
xPC Target Library for Ethernet
Use the Extract block to extract network buffer packets.

Packet size (-1: inherit)
Enter the packet size for the network buffer packet to extract.
Enter -1 (default) to inherit the packet size.

Link

Purpose
Library

Description

Link block
xPC Target Library for Ethernet

Use the Link block to convert a vector of network buffer signals into a
linked list of signals.

8-9

Merge

8-10

Purpose
Library
Description

Block
Parameters

Merge block
xPC Target Library for Ethernet
Use the Merge block to combine signal pointers to a linked list.

Number of inputs
Enter the number of network buffer signal pointers to combine
into a linked list.

Split

Purpose
Library
Description

Block
Parameters

Split block
xPC Target Library for Ethernet

Use the Split block to separate a linked list of buffer pointers into
separate individual pointers.

Number of outputs
Enter the number of pointers the input linked list should be
separated into.

¢ If the number of buffers is the same as this value, this block
splits them and outputs them in the order they appear in the
vector, or in reverse order (depending on the setting of the
Split in reverse order parameter).

¢ If the number of buffers is less than Number of outputs, the
block outputs zeros (0s) for the extra output ports.

¢ If the number of buffers is greater than Number of outputs,
the block either deletes the extra buffers, or chains the
remaining buffers together (depending on the setting of the
Allow chaining for last signal parameter).

Split in reverse order
Select this check box to split out the network buffers in the reverse
order in which they are received.

Allow chaining for last signal
Select this check box to chain together remaining network buffers.
There might be remaining buffers if the incoming linked list
contains more buffers than the number in Number of outputs.

Clear this check box to delete the remaining buffers.

8-11

Unlink

8-12

Purpose
Library
Description

Block
Parameters

Unlink block
xPC Target Library for Ethernet

Use the Unlink block to convert a linked list of signals into a vector
of network buffer signal.

Vector length (-1: inherit)
Enter the number of signals in the linked list of signals that you
want to separate. Enter -1 (default) to inherit the vector length.

UDP I/0 Support

e “User Datagram Protocol (UDP)” on page 9-2

o “xPC Target UDP Example” on page 9-5

¢ “UDP Communication Setup” on page 9-12

¢ “Boards and Blocks — Alphabetical List” on page 9-14

9 upor 1/O Support

User Datagram Protocol (UDP)

In this section...
“What Is UDP?” on page 9-2
“Why UDP?” on page 9-4

“Note on UDP Communication” on page 9-4

What Is UDP?

The xPC Target software supports communication from the target PC to other
systems or devices using User Datagram Protocol (UDP) packets. UDP is a
transport protocol similar to TCP. However, unlike TCP, UDP provides a
direct method to send and receive packets over an IP network. UDP uses
this direct method at the expense of reliability by limiting error checking
and recovery.

To use UDP for your xPC Target system, be sure to create a TCP/IP boot disk
and boot the target PC with that boot disk.

The User Datagram Protocol (UDP) is a transport protocol layered on top of
the Internet Protocol (IP) and is commonly known as UDP/IP. It is analogous
to TCP/IP. A convenient way to present the details of UDP/IP is by comparison
to TCP/IP as presented below:

® Connection Versus Connectionless — TCP is a connection based
protocol, while UDP is a connectionless protocol. In TCP, the two ends
of the communication link must be connected at all times during the
communication. An application using UDP prepares a packet and sends
it to the receiver’s address without first checking to see if the receiver is
ready to receive a packet. If the receiving end is not ready to receive a
packet, the packet is lost

e Stream Versus Packet — TCP is a stream-oriented protocol, while UDP
is a packet-oriented protocol. This means that TCP is considered to be a
long stream of data that is transmitted from one end to the other with
another long stream of data flowing in the other direction. The TCP/IP
stack is responsible for breaking the stream of data into packets and
sending those packets while the stack at the other end is responsible for

User Datagram Protocol (UDP)

reassembling the packets into a data stream using information in the
packet headers. UDP, on the other hand, is a packet-oriented protocol
where the application itself divides the data into packets and sends them to
the other end. The other end does not have to reassemble the data into a
stream. Note, some applications might indeed present the data as a stream
when the underlying protocol is UDP. However, this is the layering of an
additional protocol on top of UDP, and it is not something inherent in the
UDP protocol itself.

e TCP Is a Reliable Protocol, While UDP Is Unreliable — The packets
that are sent by TCP contain a unique sequence number. The starting
sequence number is communicated to the other side at the beginning of
communication. Also, the receiver acknowledges each packet, and the
acknowledgment contains the sequence number so that the sender knows
which packet was acknowledged. This implies that any packets lost on the
way can be retransmitted (the sender would know that they did not reach
their destination because it had not received an acknowledgments). Also,
packets that arrive out of sequence can be reassembled in the proper order
by the receiver.

Further, time-outs can be established, because the sender will know (from
the first few packets) how long it takes on average for a packet to be sent
and its acknowledgment received. UDP, on the other hand, simply sends
the packets and does not keep track of them. Thus, if packets arrive out
of sequence, or are lost in transmission, the receiving end (or the sending
end) has no way of knowing.

TCP communication can be compared to a telephone conversation where a
connection is required at all times and two-way streaming data (the words
spoken by each party to the conversation) are exchanged. UDP, on the
other hand, can be compared to sending letters by mail (without a return
address). If the other party is not found, or the letter is lost in transit, it is
simply discarded. The analogy fails, however, when considering the speed of
communication. Both TCP and UDP communication roughly happen at the
same speed, because both use the underlying Internet Protocol (IP) layer.

Note Unreliable is used in the sense of “not guaranteed to succeed” as
opposed to “fails a lot of the time.” In practice, UDP is quite reliable as long as
the receiving socket is active and is processing data as quickly as it arrives.

9-3

9 upor 1/O Support

9-4

Why UDP?

UDP was chosen as the xPC Target transport layer because of its lightweight
nature. Since the primary objective of an application running in the xPC
Target framework is real-time, the lightweight nature of UDP ensures that
the real-time application will have a maximum chance of succeeding in
real-time execution. Also, the datagram nature of UDP is ideal for sending
samples of data from the application generated by the Real-Time Workshop
software. Because TCP is stream oriented, separators between sets of data
must be used for the data to be processed in samples. It is easier to build
an application to deal with unreliable data than it is to decode all of this
information in real-time. If the application is unable to process the data as
quickly as it arrives, the following packets can just be ignored and only the
most recent packet can be used.

Communication can involve a packet made up of any Simulink data type
(double, int8, int32, uint8, etc.), or a combination of these. The xPC Target
block library provides blocks for combining various signals into one packet
(packing), and then transmitting it. It also provides blocks for splitting a
packet (unpacking) into its component signals that can then be used in a
Simulink model. The maximum size of a packet is limited to about 1450 bytes.

Note on UDP Communication

The UDP blocks work in the background when the real-time application is
not running. The UDP communication has been set up to have a maximum
of two UDP packets waiting to be read. This applies to one UDP port, which
corresponds to one UDP Receive block. All subsequent packets are rejected.
This prevents excessive memory usage and minimizes the load on the TCP/TP
stack. Consequently, when any large background task is performed, such as
uploading a screen shot or communicating large pages through the WWW
interface, packet loss might occur. Design applications so that this is not
critical. In other words, the receipt of further packets after the ones that were
lost ensures seamless continuation.

Note also that because UDP block transfers operate as background tasks,
the xPC Target software disables them in polling mode. See Restrictions
Introduced by Polling Mode.

xPC Target™ UDP Example

xPC Target UDP Example

This section provides an example of how to set up two-way data exchange
between two xPC Target systems, between the xPC Target and Simulink
products, or between two Simulink models. When one or both of the systems
is running Simulink in non-real time, be sure to set the sample time properly.

Note To use UDP for your xPC Target system, be sure to create a TCP/IP
boot disk and boot the target PC with that boot disk.

The hypothetical models are called udpsendreceiveA and udpsendreceiveB.
Two different sets of data are transferred between these two models, one set
from udpsendreceiveA to udpsendreceiveB and another set in the opposite
direction.

The data to transfer is in the following order:
udpsendreceiveA to udpsendreceiveB

® yint8 (3x3)
® yint16 (1x1)
® double (2x4)

udpsendreceiveB to udpsendreceiveA

® single (4x1)

® double (2x2)

® yint32 (2x2)

® int8 (5x3)

For the purposes of this example, all the inputs are generated using Simulink
Constant blocks that use the MATLAB random number function (rand).

The Real-Time Workshop software uses this function at the time of code

generation to generate random numbers. To generate the vector of uint8
(3x3), use the MATLAB function

9 upor 1/O Support

9-6

uint8(255 * rand(3,3))

since 255 is the maximum value for an unsigned 8-bit integer. The other

values are generated similarly.

With this setup, construct the send side of udpsendreceiveA.

E! udpsendreceivef

File Edit ‘iew Simulation Format Tools Help

=lolx]

uint8 255 rand 2,2)) lﬂﬁﬁ)_»

uinl& (751 o
Ll

o
) e o int1eE -
uint1555536° rand 32764) | Fack
cz
2 randi2 411 10% rand 500 -5300) double i2xt)
ca
Fack

uorP
Send
Binary

Send

Note that the width of the UDP packet to be sent is 75 bytes. The

parameters used in the Pack block are Input port datatypes
{'uint8','uinti16', 'double'} and Byte Alignment 1.

For the Send block, set the IP Address to send to to 192.168.0.11. This is
the hypothetical address of the system that will run udpsendreceiveA. Set
the IP Port to send to to 25000 (picked arbitrarily). The sample time is

set to 0.01.

xPC Target™ UDP Example

Use this information to construct the receive end of udpsendreceiveB.

_laix]

File Edit ‘iew Simulation Format Tools Help

uinls [Zx31 »

Terminator
LOP uints (7S m| Unpack intis »
Recaie "
Binary double Terminato2
double (2x4
Receie uble (2x4) »—
Terminato 3

Terminator Hnpack

For setting up the Receive block, set IP address to receive from to
192.168.0.10 (the hypothetical address of the system that will run
udpsendreceiveB). The IP port to receive from is set to 25000 (the same
value as set in the Send block in udpsendreceiveA). The Output port width
is set to 75, which is obtained from the output port width of the Pack block
in udpsendreceiveA.

For the Unpack block, Byte Alignment is set to 1 and the Output port
datatypes is set to {'uint8','int16"', 'double'} from the Pack block in
udpsendreceiveA. The Output port dimensions is set to {[3 3],1,[2 4]}
from the dimensions of the inputs to the Pack block in udpsendreceiveA.

Note that in udpsendreceiveB, the second output port of the Receive block

1s sent into a terminator. You can use this to determine when a packet has
arrived. The same is true for the outputs of the Unpack block, which in a real
model would be used in the model.

9-7

9 upor 1/O Support

9-8

To construct the udpsendreceiveB to udpsendreceiveA side of the

communication, follow an analogous procedure. The final udpsendreceiveA

1s shown below.

D udpsendreceivef

File Edit “igw Simulatiu:un|Fu:urmat Toals Help

=1o1x]

uint8 (255 rand (3 3}

cA

uints (3x3) »

Unpack

. o [lnl
uint15(55536° rand-32768) int1& - Pack uinlS (75) Send
Binary
cz
Send
2 rndi2 411 F10Mrand 600800 [O2uDE B o
c3
Fack
single (4 | —
L af]
Terminator]
double (2x2) | —
Lt |
inl i Tarminato?2
LD uinkd (500 | Unpack arminato
Rece e . .
Binary double uint32 (2x2) e
Facs va Terminator3
int& (Sx3h | —
Terrnin:ulc\r i
Terminatord

xPC Target™ UDP Example

The following table lists the parameters in udpsendreceiveA.

Block Parameter Value
Receive IP address 192.168.0.11
IP port 25000
Output port width 80
Sample time 0.01
Unpack Output port dimensions {4,[2 2],[2 2],[5 3]}

Output port data types

{'single', 'double’,
‘uint32', 'int8'}

Byte alignment

2

9 upor 1/O Support

The final udpsendreceiveB model is shown below.

=TE]

File Edit ‘iew Simulation Format Tools Help

uints (3x3 »

Teminator]

LOP uintd (75 p| Unpack inti& »
Recaie "
Binary double Terminato 2
double (2x4
Receie ubls (2x4) »—
Terminator3

Teminator Hnpack

single(i2*rand #1311 107 mnd 50 25y |-Smde 4
c1
| (2" rand 2,211 10 rand* 500 -200) I%Q‘ﬁ)—p
o UDF
o2 Pack uints (500 - Sand
A — Einary
| uint32 frandi2 2 2432) I—)—D”'" '
Sand
c3
| int8 (255" mnd (5,3)-128) lmﬂp
4
Pack

9-10

xPC Target™ UDP Example

The following table lists the parameters in udpsendreceiveB.

Block Parameter Value
Pack Input port data types | {'single', 'double’,
'uint32', 'int8'}
Byte alignment 2
Send IP address 192.168.0.10
IP port 25000
Sample time 0.01

9-11

9 upor 1/O Support

UDP Communication Setup

9-12

The infrastructure provided in the xPC Target Library for UDP
communication consists mainly of two blocks — a Send block and a Receive
block. These blocks are in the xPC Target Library, available from the
Simulink Library under xPC Target. You can also access them from the
MATLAB command line by typing

xpclib

The blocks are located under the UDP heading in the library. The Send block
takes as input a vector of type uint8, which it sends. This is limited to a
length of about 1450 bytes (i.e., a 1 by 1450 vector). Similarly, the Receive
block outputs a vector of uint8. To convert arbitrary Simulink data types
into this vector of uint8, a Pack block is provided, while an Unpack block is
provided to convert a vector of uint8s back into arbitrary Simulink data types.

You can have up to 32 UDP blocks in any given model (Send and Receive
blocks combined in any order).

The xPC Target block library includes a Byte Reversal block for
communication with big-endian architecture systems. You do not need this
block if you are communicating between 80x86-based PC systems running
either the xPC Target or Microsoft® Windows® software.

UDP Communication Setup

[ZILibrary: #pclib/UDP O] x|
File Edit Wiew Format Help
UDF
Fach o Send
Binany
Fack Send
uor b
Receie Unpack F
Einany o
Beceive Unpack
Eyt= L
e rsal
Byte Rewar=al

All the blocks are set up to work both from within the Simulink environment
and from an application running under the xPC Target system. However,
you must be careful when using a Simulink simulation and an xPC Target
application to communicate, or when using two Simulink models. This is
because a Simulink model executes in non-real time and can be several times
faster or slower than real time. The sample time of the send and receive
blocks and the sample time of the Simulink model must be set so that the
communication can proceed properly.

Note the following:

® Your model cannot have two UDP Receive blocks configured with the same
receive port, for example, the same receive port and different IP addresses.

® Your model cannot have two UDP Send blocks configured with the same
send (not -1) port, for example, the send port and different IP addresses.

See the UDP Data Streaming Demo for a demonstration of how to perform
UDP data streaming with the xPC Target system.

9-13

9 upor 1/O Support

Boards and Blocks — Alphabetical List

9-14

Byte Reversal/Change Endianess

Purpose

Description

Byte Reversal/Change Endianess block

You use the Byte Reversal/Change Endianess block for communication
between an xPC Target system and a system running with a processor
that is big-endian. Processors compatible with the Intel 80x86 family
are always little-endian. For this situation, you should insert a Byte
Reversal/Change Endianess block before the Pack block and just after
the Unpack block to ensure that the values are transmitted properly.
The following is the Change Endianess block.

E: Function Block Parameters: Change endianess il

—wpreverseendian [maszk] [link]

—Parameters
MHurnber of input parts:

bachine word length: I Byte LI

0k, Cancel | Help | Apply |

The following is the Byte Reversal block.

E! Function Block Parameters: Byte Reversal il

—rporeverseendian [mask] [link]

—Parameters

MHurnber af inpuks:

ak. Cancel Help Spply

9-15

Byte Reversal/Change Endianess

9-16

Block
Parameters
for

Change
Endianess

Byte
Reversal
Block

Parameters

Number of input ports

The number of input ports adjusts automatically to follow this
parameter, and the number of outputs is equal to the number
of inputs.

Machine word length

Select one of the following machine word lengths to which to
convert the data:

* Byte
e Word
¢ Double Word

The following is the Byte Reversal block.

Number of inputs

The number of input ports adjusts automatically to follow this
parameter, and the number of outputs is equal to the number
of inputs.

UDP Pack

Purpose
Library

Description

Block
Parameters

Example

UDP Pack block
xPC Target Library for UDP

The Pack block is used to convert one or more Simulink signals of
varying data types to a single vector of uint8 as required by the Send
block.

Input port data types
Specify the data types for the different signals as part of the block
parameters. The supported data types are double, single, int8,
uint8, int16, uint16, int32, uint32, and boolean. The block
determines the sizes of the signals automatically.

Byte alignment
The byte alignment field specifies how the data types are aligned.
The possible values are: 1, 2, 4, and 8. The byte alignment scheme
is simple, and ensures that each element in the list of signals
starts on a boundary specified by the alignment relative to the
start of the vector.

5] Function Block Parameters: Pack x|

—rpoaty2byte [mask] [link]

Binamy byte packing of input data inta a zingle output vectaor

—Parameters
[nput port data types [cell amay]:
I{'uint32','uint1 ' 'uint32",'double’,'double’'double’,'uint8'}

Byte alignment:l 1 LI

0k, Cancel Help | Apply |

9-17

UDP Pack

9-18

As seen in the figure above, the data types of each of the signals must
be specified as a cell array of strings in the correct order. Once this is
done, the block automatically converts itself to one with the correct
number of input ports. There is always one output port. For example,
say the Input port data types are specified as

{'uint8','uint32', 'single', 'int16', 'double'}

and an alignment of 4 is used. Assume also that all the signals are
scalars. The first signal then starts at byte 0 (this is always true),

the second at byte 4, the third at byte 8, the fourth at byte 12, and
the fifth at byte 16. Note that the sizes of the data types used in this
example are 1, 4, 4, 2, and 8 bytes respectively. This implies that there
are “holes” of 3 bytes between the first and second signal and 2 bytes
between the fourth and fifth signal.

A byte alignment of 1 means the tightest possible packing. That is,
there are no holes for any combination of signals and data types.

Note Individual elements of vector/matrix signals are not byte aligned:
only the entire vector/matrix is byte aligned. The individual elements
are tightly packed with respect to the first element.

See Also
UDP Unpack
UDP Send

UDP Receive

Purpose
Library

Description

UDP Receive block
xPC Target Library for UDP

The Receive block has two output ports. The first port is the output of
the received data as a vector of uint8 while the second one is a flag
indicating whether any new data has been received. This port outputs
a value of 1 for the sample when there is new data and a 0 otherwise.
The default behavior of the Receive block is to keep the previous output
when there is no new data. You can modify this behavior by using the
second port to flag when there is new data.

Regardless of the data type, this block returns its data as a byte stream
(represented as a vector of uint8 values). Use the UDP Unpack block to
convert from the vector of uint8 values to the signal data type. See the
UDP Data Streaming Demo for a demonstration of how to use the UDP
Unpack block to extract your data.

9-19

UDP Receive

5] source Block Parameters: Receive x|

—wpcudpbytereceive [mask] (link]

—Parameters
|F address to receive from [0.0.0.0 for accepting all);

0007

|F port to receive from;
| 25000

COutput pork width [nurnber of bytes]:

|

Sample tirme:
{001
] Cancel Help
Block IP address to receive from
Parameters Can be left with the default value of 0.0.0.0. This accepts all UDP

packets from any computer. If set to a specific IP address, only
packets arriving from that IP address are received.

IP port to receive from
Port that the block accepts data from. The other end of the
communication sends data to the port specified here.

Output port width
Width of the acceptable packets. You can obtain this when
designing the other side (send side) of the communication.

Sample time
You can set this parameter to -1 for an inheritable sample time,
but it is recommended that this be set to some specific (small)

9-20

UDP Receive

value to eliminate chances of dropped packets. This is especially
true when you are using a small base sample time.

See Also

UDP Send

UDP Unpack

UDP Data Streaming Demo

9-21

UDP Send

9-22

Purpose
Library

Description

UDP Send block

xPC Target Library for UDP

The Send block has only one input port, which receives the uint8 vector

that is sent as a UDP packet.
Regardless of the data type of the data being sent, you must supply a

byte stream (represented as a uint8 vector) to the Send block. Use the
UDP Pack block to convert from the signal data type to a single vector of
uint8 values. See the UDP Data Streaming Demo for a demonstration
of how to use the UDP Pack block to convert your data to a unit8 vector.

E Sink Block Parameters: Send

x|

—rpeudpbytezend [mazk] [link]

—Parameters

IP address to send to [255. 255,255,255 for broadcast]:

Remote [P port to zend to:

25000

Ilze the following local IP port [-1 for automatic port assignment];

[

Sample time:

001

OE.

Cancel Help

Apply

UDP Send

Block
Parameters

IP address to send to
Specify the IP address to send the packet.

IP port to send to
Specify the port to which to send the packet.

Use the following local IP port
Set this parameter to -1 (default) to allow the networking stack to
automatically determine the local IP port that is used for sending.
Otherwise, specify a particular port to send a packet from that
port.

Sample time
You can set this parameter to -1 for an inheritable sample time,
but it is recommended that this be set to some specific (large)
value to eliminate chances of dropped packets. This is especially
true when you are using a small base sample time.

See Also

UDP Pack

UDP Receive

UDP Data Streaming Demo

9-23

UDP Unpack

Purpose UDP Unpack block
Library xPC Target Library for UDP
Description This block is the exact analog of the Pack block. It receives a vector

of uint8 and outputs various Simulink data types in different sizes.
The Pack block is on the sending side and the Unpack block is on the
receiving side in different models.

Block Output port dimensions

Parameters Contains a cell array, with each element the dimension returned
by the MATLAB size function of the corresponding signal. This
should normally be the same as the dimensions of the signals
feeding into the corresponding Pack block.

Output port datatypes
Specify the data types for the different signals as part of the
block parameters. The supported data types are double, single,
int8, uint8, int16, uint16, int32, uint32, and boolean. This
parameter is the same as the Input port data types parameter
of the matching UDP Pack block.

Byte alignment
The byte alignment field specifies how the data types are aligned.
The possible values are: 1, 2, 4, and 8. The byte alignment scheme
is simple, and ensures that each element in the list of signals
starts on a boundary specified by the alignment relative to the
start of the vector.

9-24

UDP Unpack

Example

Note
on Byte
Alignment

=] Function Block Parameters: Unpack x|

—wpchyte2any [mask] [link]

IInpack. a binamn byte vector to extract data

—Parameterz

Cutput port dimenzions [cell array):
[£1. 1.11.4104.41.[3.41(3.41.[1.4]}

Output port data twpes [cel aray):
I{'u:h:uul:ule'}

Byte alignment:l 1 ;I

ak. Cancel Help | Apply |

As shown in the figure above, the Output port datatypes field is the
same as the Input port data types field of the matching Pack block.

The byte-alignment feature provided in the Pack and Unpack blocks is
primarily intended for interfacing a system running the xPC Target
software to another system that is running neither Simulink nor

xPC Target software. For example, the data on the other end might

be in the form of a C struct, which is subject to the byte-alignment
convention of the compiler used. We recommend using a byte-alignment
value of 1 (tightly packed) whenever possible. Of course, this is easily
accomplished when UDP I/0O is used to exchange data between two xPC
Target systems or between xPC Target and Simulink systems.

Even when communication is between the xPC Target system and a
system using a C struct, the use of compiler pragmas might help to
pack the structure tightly. For example, #pragma pack(1) is common
to several compilers. The byte-alignment blocks are provided for the
case when this is not possible.

9-25

UDP Unpack

9-26

ARINC 429 Support

The xPC Target block library interfaces the target PC to an ARINC 429
bus. The xPC Target ARINC 429 blocks work with the Condor Engineering
CEI-X20 series boards (http://www.condoreng.com). This chapter includes
the following section:

Condor CEI-520/520A PCI board series that interfaces
target PCs to ARINC 429 data buses.

“Boards and Blocks — Alphabetical = Description of the block parameter
List” on page 10-2 fields for the xPC Target blocks that
support ARINC 429.

http://www.condoreng.com

10 ARINC 429 Support

Boards and Blocks — Alphabetical List

10-2

Condor CEI-520/520A

Board

General
Description

Condor CEI-520/520A

The commercial and aircraft transport industry uses the ARINC 429
protocol. The ARINC-429 driver library allows xPC Target applications
to connect to an ARINC bus network to send and receive 32-bit words.
This chapter assumes that you are familiar with the ARINC 429
standard.

The xPC Target software supports the ARINC 429 protocol with the
following Condor Engineering boards. These board interface a target
PC to an ARINC 429 data bus. These boards support the PCI bus.

e CEI-520

e CEI-520A

The xPC Target block library provides the following driver blocks to
support these boards:

¢ Condor CEI-x20 Initialize

¢ Condor CEI-x20 Send

¢ Condor CEI-x20 Receive

Use the following utility blocks to format the data sent to and received
from the CEI-x20 Send and Receive blocks:

¢ Condor Encode ARINC 429 Words for Send

¢ Condor Decode ARINC 429 Words from Receive

10-3

Condor CEI-520/520A

Board L. Board name
Characteristics
Manufacturer
Bus type

Access method

Multiple block instance
support

Multiple board support

10-4

CEI-520, CEI-520A
Condor Engineering
PCI

Memory mapped
No

Yes

Condor CElI-x20 Initialize

Purpose
Library

Note

Block
Parameters

Condor CEI-x20 Initialize block
xPC Target Library for Arinc-429

Your model must include a CEI-x20 Initialize block for every physical
board in the model. Configure your Send and Receive blocks with the
appropriate board ID value from this block to identify the physical
board to which they refer. This block supports up to 16 CEI-x20 boards.

Board ID
From the list, select from 1 to 16 a unique ID for the CEI board.
Use this ID to identify the board in the associated Send and
Receive blocks in your model.

Wrap each send channel to the corresponding receive channel
Select this check box to enable the hardware loopback feature. If
this block is selected, each word sent over the output channel n
will be received on the input channel n.

Timer tick length
Specify the length of a timer tick in .25 microsecond units.
The default value is 4000, which results in a tick length of one
millisecond. Time tags (if selected from a Decode ARINC 429
Words from Receive block) are provided in units of timer ticks. A
timer tick specifies the units in which the time the time tags is
expressed. This concept is provided as a convenience to users.

Sample time
Base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with

10-5

Condor CEl-x20 Initialize

this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

10-6

Condor CEI-x20 Send

Purpose
Library
Note

Block
Parameters

Condor CEI-x20 Send block
xPC Target Library for Arinc-429

Use this block to set up one channel of a board to send 32-bit words. The
number of channels varies depending on the board you have.

Board ID
From the list, select a unique ID from 1 to 16 for the CEI board.
Use the ID previously assigned by the associated Initialize block
in the model. If you are using a corresponding Receive block for
this Send block, select the same board ID as you enter here.

Channel
From the list, select a channel ID. This number varies with the
particular board you are using. Check your board manufacturer
documentation for the number of channels in the board. If you try
to select a nonexistent channel, the block returns an error.

Baud rate
From the list, select

e 12.5 Kbits/sec
® 100 Kbits/sec

If you are using a corresponding Receive block, be sure to select the
same baud rate setting for this channel.

Parity
From the list, select
* odd

® none

10-7

Condor CEI-x20 Send

Note If you are using a corresponding Receive block, be sure to
select the same parity setting for this channel.

Sample time
Base sample time or a multiple of the base sample time.

10-8

Condor CElI-x20 Receive

Purpose
Library

Note

Block
Parameters

Condor CEI-x20 Receive block
xPC Target Library for Arinc-429

Use this block to set up one channel of a board to receive 32-bit words.
The number of channels varies depending on the board you have.

Note The output port of a Receive block is a signal of type double,

but the data on this port is encoded in a nonstandard way. Normally,
you should feed this output port into an ARINC Decode block (which
converts the data into standard double output). You can also feed it into
blocks such as MUX blocks which do not interpret the data. However,
before feeding this port into a block such as an xPC Target Scope block
which does interpret the data, you must first pass it through an ARINC
Decode block.

Board ID
From the list, select a unique ID from 1 to 16 for the CEI board.
Use the ID previously assigned by the associated Initialize block
in the model. If you are using a corresponding Send block, be
sure to enter the same board ID.

Channel
From the list, select a channel number. The number of channels
supported varies with the particular board you are using. Check
your board manufacturer documentation for the number of
channels in the board.

Max number of words to return
Enter the maximum number of words to extract from the
hardware receive buffer. This is the maximum number of words
for the selected channel at each sample time.

10-9

Condor CEI-x20 Receive

If you select n, the output port of the block will have a signal width
of n+1 and the first signal element will contain the count of words
actually extracted from the buffer during the current sample time.

Min number of words to return
Enter the minimum number of words to extract from the
hardware receive buffer. This is the minimum number of words
for the selected channel at each sample time.

If the hardware receive buffer does not contain this minimum
number of words for the selected channel during the current
sample time, the block extracts no words from the hardware
receive buffer. The word count associated with the output port
would then be 0.

Baud rate
From the list, select

e 12.5 Kbits/sec
® 100 Kbits/sec

If you are using a corresponding Send block, be sure to select
the same baud rate setting for this channel.

Parity
From the list, select

® odd
® none

If you are using a corresponding Send block, be sure to select
the same parity setting for this channel.

Sample time
Base sample time or a multiple of the base sample time.

10-10

Condor Encode ARINC 429 Words for Send

Purpose
Library

Note

Block
Parameters

Encode ARINC 429 Words for Send block
xPC Target Library for Arinc-429

The output port of an Encode block is a signal of type double. Because
the Encode block encodes the data on this port in a nonstandard way,
you must send this data to one of the following:

® Condor CEI-520A Send block — The ARINC Send block accepts data
as a double. This is the block to which you will most likely send data
from the ARINC Encode block.

¢ MUX block — The MUX block does not interpret the data. After the
MUX block, you can send it to an ARINC Send block.

Label
Enter a three digit octal number as the label. The label field of

each ARINC word sent over the output port will contain this value.

Data type vector
Enter a vector consisting of values between 0 and 3. These
values specify the data type. The length of this vector determines
the widths of both the input and output ports. The data
type determines how the input double value is converted to a
corresponding ARINC value, as follows

Type Interpretation

0 Raw — Cast the input to an unsigned 32-bit integer
and output it as an ARINC word with no further
processing.

10-11

Condor Encode ARINC 429 Words for Send

Type Interpretation

1 BNR (two’s complement binary notation) — Scale
the input by dividing it by the scale vector in

the Resolution (BCD) or Scale (BNR) vector
parameter. This input value is restricted to the range
[-Scale, Scale], resulting in a scaled value in the
range [-1,1].

The driver performs the following on the scaled value:
1 Multiplies the scaled value by 2718.

2 Truncates the value to a 19-bit fixed-point integer,
then masks it to the number of high-order bits
specified by the Bits to send parameter.

3 Shifts the result up 10 bits and inserts them into
the 32-bit integer along with the SSM, SDI, and
Label parameter values.

To place discrete bits into unused positions, construct
the 32-bit word and use it with RAW mode instead of
the BNR mode.

2 BCD (binary coded decimal) — Cast the input as a
signed integer, limit it to the range representable by
an ARINC five-character BCD value, and pack it into
an ARINC word with the appropriate SSM, SDI, and
Label parameter values.

3 Discretes —- Cast the input as an unsigned 32-bit
integer and pack the low order 19 bits of the result
into an ARINC word with the appropriate SSM, SDI,
and Label parameters.

Resolution (BCD) or Scale (BNR) vector
Enter a vector or scalar value as the resolution vector. This value
must be a vector of the same length as the data type vector .
Otherwise, the scalar value is applied to the length of the data

10-12

Condor Encode ARINC 429 Words for Send

type vector. The interpretation of this value depends on the data

type. The block works with the data types as follows.

Type Effect

Raw The block ignores any resolution value. However,
you must still include an associated value in the
resolution vector.

BNR The block uses this value as a scale factor. The

block divides the input value by the scale. Doing
so limits the valid input range to [-Scale,
Scale]. Values outside that range will be limited
to —Scale.

A 19-bit signed ARINC binary can represent
a range from -262,144 to 262,143. If the
combination of input signal and resolution
produces a value outside this range, the block
keeps it within the range.

10-13

Condor Encode ARINC 429 Words for Send

10-14

Type Effect

BCD The resolution vector specifies, in the same
units as the input signal, the value of the least
significant digit of the BCD data field to be
encoded and sent. For example, if the associated
resolution is .01 and the input signal contains
the value 3.1415, the output ARINC word will
contain the number 314 in its data field, encoded
in BCD. The same resolution is needed on the
receive side to reconstruct 3.14. Resolution

is typically a power of 10, but this is not a
restriction.

The range representable as an ARINC BCD
value is -79,999 to 79,999. If the combination

of input signal and resolution produces a value
outside this range, the block limits it to be within
the range.

Discretes | The block ignores any resolution value. However,
you must still include an associated value in the
resolution vector.

Bits to send (BNR)
Specifies the number of high order bits of the 19-bit scaled input
to keep when the value is inserted into the encoded word. The
block uses this value for a BNR format input; other formats ignore
it. You must include a place in the array of Bits values for each

entry in the data type vector array; however, the block uses the
value only for BNR.

SDI vector
Enter a vector or scalar value as the SDI vector. This must be a
vector of the same length as the data type vector. Otherwise,
the scalar value is applied to the length of the data type vector.

This block interprets the SDI vector values as follows:

Condor Encode ARINC 429 Words for Send

Type Effect

Raw The block ignores the SDI value. However, you
must still include an associated value in the
resolution vector.

BNR, BCD, | If the SDI element is in the range 0 to 3, the block

Discretes | sets the SDI field of the corresponding output word
to that value. If an SDI element has a value of
-1, the block performs no SDI processing on the
corresponding output word.

SSM vector

Enter a vector or scalar value as the SSM vector. This must be a
vector of the same length as the data type vector. Otherwise,

the scalar value is applied to the length of the data type vector.

If the SSM element is in the range 0 to 3, the block sets the SSM
field of the corresponding output word to that value. If an SSM
element has a value of -1, the block performs no SSM processing
on the corresponding output word. Note that the meaning of a

given SSM value differs depending on the data type of the ARINC

word.
Type Effect
Raw The block ignores the SSM value. However, you
must still include an associated value in the
resolution vector.
BNR, BCD, | If the SSM element is in the range 0 to 3, the block
Discretes | sets the SSM field of the corresponding output

word to that value. If an SSM element has a value
of -1, the block performs no SSM processing on
the corresponding output word.

10-15

Condor Decode ARINC 429 Words from Receive

Purpose
Library

Note

Block
Parameters

10-16

Decode ARINC 429 Words from Receive block
xPC Target Library for Arinc-429

The input port of a Decode block is a signal of type double. Because the
Decode block interprets the data on this port in a nonstandard way, you
can send the data to this port from one of the following:

® Condor CEI-520A Receive block — The Condor CEI-520A Receive
block outputs its data into standard double output. This is the block
from which you will most likely send data to the ARINC Decode block.

The output port of a Decode block is in standard double format.

The input to this block should be a CEI-x20 Receive block. The Decode
block input port width will automatically adapt to that of the source
block.

Label
Enter a three digit octal number. If the label of an input word
does not match this label, the block completely ignores the word
and does not apply the Sync mask and Sync value parameters.

Data type vector
Enter a vector consisting of values between 0 and 3. These values
specify the data type. The length of this vector determines how
many ARINC words the block will attempt to decode and output
each sample time.

Condor Decode ARINC 429 Words from Receive

The elements of the vector determine how the input double value
1s converted to a corresponding double output value, as follows

Type

Interpretation

0

Raw — Convert the entire (unsigned) 32-bit input
word to double.

BNR — For each word, convert bits 10—28 from
signed binary format to a double output in the range
[-Scale, Scale] using the Resolution (BCD) or
Scale (BNR) vector scale factor specified for this
value.

BCD — For each word, convert bits 10-28 from BCD
format to double, using the sign data in the SSM.

Discretes — For each word, extract bits 10-28 and
return them as a double.

The elements of the data type vector determine how the input
ARINC value is converted to a corresponding double output. The
following describes how this block performs the conversion. For
the purposes of this description, n denotes the length of the data
type vector.

® The output width is one of the following, depending on your time

tag selection

= 2n + 1 — This is the output width if you select the Provide time
tags check box. The width consists of a count element, followed by
n data elements, followed by n time tag elements.

= n + 1 — This is the output width if you do not select the Provide
time tags check box. The width consists of a count element
followed by n data elements.

The count element indicates how many valid messages the block
has decoded during the current sample time. The count element
has a nonzero value if at least one message on the data element

10-17

Condor Decode ARINC 429 Words from Receive

10-18

is currently valid, and zero otherwise. If the count element has a
value greater than one, the block asserts only the most recent valid
message on the output port.

® The Decode block buffers its input internally. It updates its output
port only during sample times when it has successfully assembled at
least one complete message of length n.

Note that more than one complete message might be assembled
during one sample time. The Decode block successively overwrites
these messages such that only the most recent message is on the
output port.

Resolution (BCD) or Scale (BNR) vector
Enter a vector or scalar value as the resolution vector. This value
must be a vector of the same length as the data type vector.
Otherwise, the scalar value is applied to the length of the data
type vector. The interpretation of this value depends on the data
type. The block works with the data types as follows.

Type Effect

Raw The block ignores any resolution value. However,
you must still include an associated value in the
resolution vector.

BNR The block uses this value as a scale factor. The
block converts the binary value in bits 10-28
back to a double in the range [-1,1]. The block
then multiplies that value by the scale value to
recover the original value.

A 19-bit signed ARINC binary can represent
a range from -262,144 to 262,143. If the
combination of input signal and resolution
produces a value outside this range, the block
clamps it to be within the range.

Condor Decode ARINC 429 Words from Receive

Type

Effect

BCD

The resolution vector specifies, in the same
units as the input signal, the value of the least
significant digit of the BCD data field to be
encoded and sent. For example, if the associated
resolution is .01 and the input signal contains
the value 3.1415, the output ARINC word will
contain the number 314 in its data field, encoded
in BCD. The same resolution is needed on the
receive side to reconstruct 3.14. Resolution

is typically a power of 10, but this is not a
restriction.

The range representable as an ARINC BCD value
1s -79,999 to 79,999. If the combination of input
signal and resolution produces a value outside
this range, the block limits it to within the range.

Discretes

The block ignores any resolution value. However,
you must still include an associated value in the
resolution vector.

Sync mask

Enter a value, in hexadecimal, to specify which bits (if any) of
the input words are the sync bits. (A sync bit lets you specify,
using other parameters, when a message should begin.) The
Decode block will examine these bits to look for the start of the
next message. A message might be a string of one or more words.
For example, a sync mask value of 0x300 equals 1100000000 in
binary. This value selects the SDI bits (bits 9 and 10) as the sync
bits. This functionality works with the Sync value parameter.

If the sync mask is 0x0, no sync logic is used. In this case, the
next word always begins a new message.

10-19

Condor Decode ARINC 429 Words from Receive

10-20

Sync value(s)

This parameter specifies the sync logic for the block. Enter one
hex value to specify oneSync, two hex values separated by a space
for twoSync logic. For example, the sync value

0x100

selects oneSync logic. The sync value

0x100 0x200
selects twoSync logic. You can enter an 32-bit value.

The sync value takes into account the value of the sync mask,
as follows:

¢ Assume the following:

Sync mask = 0x300
Sync value = 0x100

When looking for the beginning of a new message, the block ANDs

each input word with the sync mask 0x300 and compares the result
with 0x100 and 0x300. When it finds a match, the block stops this

search and begins a new search, looking for the next message. The

block decodes the next n words starting at this point.

Assume the following:
Sync mask = 0x300
Sync value = 0x100 0x200

When looking for the beginning of a new message, the block ANDs
each input word with 0x300 and compares the result to 0x100 and
0x300. When the block finds a match, and when the next input word,
when ANDed with 0x300, equals 0x200 and 0x300, this second word
begins a new message.

Once the block locates the beginning of a message, it uses the next n
input words with the appropriate label to assemble the next output

Condor Decode ARINC 429 Words from Receive

message. The block does not use sync logic until it is time to begin
the assembly of a new message.

Provide time tags

Select this check box to enable an output port of width 2n + 1,
with time tag data in the last n elements.

10-21

Condor Decode ARINC 429 Words from Receive

10-22

MIL-STD-1553 Support

“Introduction” on page 11-2

Condor PCI/QPCI-1553

“Boards and Blocks — Alphabetical
List” on page 11-13

Introduction to the xPC Target
I/0 block library that supports
the MIL-STD-1553 bus with the
MIL-STD-1553 sublibrary.

PCI and QPCI board series
that interfaces target PCs to
MIL-STD-1553 data buses.

Description of block parameters for
MIL-STD-1553 driver blocks.

11 MILSTD-1553 Support

Introduction

In this section...

“Before You Start” on page 11-2
“Remote Terminal Operation” on page 11-5
“Bus Controller Operation” on page 11-7

“Remote Terminal and Bus Controller Operation” on page 11-9

“Bus Monitor Operation” on page 11-11

Before You Start

The xPC Target software interfaces the target PC to an MIL-STD-1553 bus
using the MIL-STD-1553 blocks provided by the xPC Target I/O block library.
The xPC Target MIL-STD-1553 blocks work with the Condor Engineering
PCI-1553 and QPCI-1553 series boards (http://www.condoreng.com).

The xPC Target I/0 block library supports the MIL-STD-1553 bus with the
MIL-STD-1553 sublibrary. The sublibrary consists of the following groupings
e 1553 Utilities — Use these general utility blocks to

= Set up Bus Monitor and Bus Controller messages

= Create Bus Controller message lists

= Encode and decode bus controller messages and status

e PCI/QPCI-1553 — Use these blocks to communicate with the
PCI/QPCI-1553 boards. These blocks enable you to

= Initialize a board for Remote Terminal, Bus Controller, and/or Bus
Monitor operation.

= Configure a board for Remote Terminal operation, including Remote
Terminal initialization and sending/receiving messages

= Configure a board to send Bus Controller messages

11-2

http://www.condoreng.com

Introduction

Regardless of the operation, always initialize your board with the PCI/QPCI
Initialize block. (Be sure to use the appropriate board block grouping.) The
examples in this topic use the QPCI blocks.

The QPCI Initialize block allows you to specify the board operation, Remote
Terminal, Bus Controller, and/or Bus Monitor operation. The dynamic dialog
for this block changes depending on the operation you select.

® Select the Initialize for Bus Controller operation check box for the
Bus Controller

® Select the Initialize for Bus Monitor operation check box for the Bus
Monitor

® Select the Initialize for Remote Terminal operation check box for
the Remote Terminal

11-3

11 MILSTD-1553 Support

114

By default, these check boxes are selected. If you deselect an operation check
box, the block grays out the associated parameters. For example,

[E] source Block Parameters: 1553 Init x|

—inicondorgpei [magk] [link]

GIPCI-1553
Condor
Initialize:

—Parameters

Channel =
[~ Loopback enabled

[~ Initialize for Bus Contraller operation

MHumber of Bus Contraller buffers to allocate:

|5

[~ Enable refties

Mo response timeout [microzeconds]:
J14

Late rezponze timeaout [microzeconds):
J1z

[~ Initialize for Bus Monitar operation

¥ Monitar bus &

[~ tanitar bus B

MHumber of manitor buffers ta allocate:
100

¥ Initialize for Femate T erminal operation

[~ RT address 31 iz Broadecast

Sample time:

f.001
PLCI glat [-1: autosearch]

f-1

0k I Cancel Help I

The following is a sample model of how to use the QPCI-1553 Initialize block
to initialize channel 1 of a board for Remote Terminal operation. This and
other examples are located in the xpcdemos directory. This model

Introduction

® (Configures two QPCI-1553 Remote Terminal Initialize blocks, one for
Remote Terminal 1 and Remote Terminal 5 on that channel.

e Initializes each Remote Terminal with legal subaddresses and legal
message lengths for each subaddress.

You can configure each subaddress for transmit, receive, or both. Configure
all the subaddresses you plan to use.

E! InitSample *

=10l x|

File Edit Wiew Simulation Format Tools Help
QFCI-1553 QFCI-1553 QFCI-1553
Candor) Candar Candar) .
Initialize s s RT Initialize RT Initialize 5
Channel 1 RT1AB RT&AB Terminator
1553 Init 1553 RT Init 1553 RT Init 1
Ready |100% | [FixedstepDiscrete i

Remote Terminal Operation

The example in this topic uses QPCI-1553 blocks to illustrate how you can
configure a Remote Terminal from an xPC Target model. For standard
initialization use the QPCI Initialize block. Use the QPCI RT Initialize block

to set up the board for Remote Terminal operation.

11-5

11 MILSTD-1553 Support

Run this example on a target PC that has a QPCI-1553 board. Replace
the hardware specific blocks with the correct blocks if your hardware

configuration is different.

E! RTSample * - IEI IEI
File Edit Wiew Simulation Farmat Tools Help
QPCI- 1553 QP CI-1553
Condar = Condor) .
Initialize 5 i RT Initialize s 5
Channel 1 RT1AB Terminator
1553 Init 1552 RT Init
QPCI-1553
Condar =
RT Receive : max
Chan 1: 1-R-3-1 - H
1552 Recaive Minbax ;0 Type Conversion2 QFCI-1553
. Condor
| . | .
] uint1G I J [BT Send
Clock Data Type Conversion Chan 1: 1-T-2-1
Constantt — 1553 Send
lnll.uJ I uint1G
; hultiport
Sine 'ulfa\reData Type Conversion Samitoh
Ready [100% | [[FixedstepDiscrate 4

The QPCI-1553 Initialize block configures the board for Remote Terminal
operation on channel 1 of the board. The QPCI-1553 RT Initialize block
configures the Remote Terminal 1 to monitor buses A and B for incoming
messages and configure the active transmit and receive subaddresses. The
QPCI-1553 Receive and Send blocks use subaddress 3 for both transmit and
receive. Note the message parameters notation 1-R-3-1 on the QPCI-1553

Receive and Send blocks. This notation has the format

remote terminal-R/T-subaddress-number of words

Remote terminal — Indicates the particular Remote Terminal

R/T — Indicates that the command is for receive (R) or transmit (T)

Subaddress — Indicates the subaddress for the message

11-6

Introduction

Number of words — Indicates the number of 16 bit integers to receive as
the data part of a message.

This 1s shorthand that indicates that Remote Terminal 1 is to receive
messages on subaddress 3 with a length of 1 word. The incoming message
consists of one 16-bit integer with a value of 1 or 2. The Multiport Switch
block uses this input to select either clock or sine wave data.

A Condor Engineering board has a processor that handles the actual
transmission and reception of messages. The QPCI-1553 Receive block reads
the board receive message buffer for the specified Remote Terminal and
subaddress. The QPCI-1553 Send block writes data to the board transmit
buffer.

Note When the board receives a transmit or receive message, it must respond
quickly because the default time-out is 14 microseconds. This time-out is
much quicker than the ability of the xPC Target software to reliably execute a
model. This situation might cause the board to transmit data from the last
time the model executed. Design your model accordingly.

Bus Controller Operation

The example in this topic uses PCI-1553 blocks. It describes how you can use
a Bus Controller in a model. This model is a simple example of how to set up a
short sequence of two messages, send them, and collect the response data.

11-7

11 MILSTD-1553 Support

11-8

Run this example on a target PC that has a PCI-1553 board. Replace
the hardware specific blocks with the correct blocks if your hardware
configuration is different.

E! BCSample * — |EI |£|
File Edit Yew Simulation Format Tools Help
PCI-1553
Condor) .
Initialize 5
Channel 1 Tearminator
1553 Init 1
1562
Create BC L L 1663 1563 FCI-1563
i Encode Encode Condor
Meazzage List] -
e BC Message 1 - - BC Message 2 L 1 Bus Controller 1
BC List L - 1-T-31 Send
Encode 1553 hiessage Encode 1553 hdessage 1 Bus Contraller
o Target Scope
N i Id: 2
i [— 3] '
Fulse *nlata Type Convarsion 1683 L Terminatord |->SM Dec;;jetBF:NSt.:us o Soope (P01
Senerator L Decode 5 essage Status: Mo Response
BC Message 2 b Decode 15532 Status o | Target Seope
' 1d: 1
Decode 1553 Message
Scope (xFC)
Constant Terminatar2
Ready [100es [[[FixedStepDiscrete Y

The PCI-1553 Initialize block configures a Bus Controller on channel 1 of the
board. This block also tells the board to reserve five message buffers. This
number must be at least as large as the longest list of messages that you
will send.

The Create BC Message List block allocates an empty list of five message
buffers in xPC Target memory. Each time this block executes, it sets the
entire list of message buffers to no-op messages. The Encode BC Message
block fills each message for any timestep during which the message should be
sent. You can also use the Encode BC Message block in an enabled subsystem
to only send that message when desired.

The L signal is the message list. The model passes this signal through all the
Encode BC Message blocks, then connects to the Bus Controller Send block.
This ensures that the model executes all the Encode BC Message blocks
execute before the Bus Controller Send block. The L signal is a custom data
type consisting of a pointer, message length, and special marker.

Introduction

Remote Terminal and Bus Controller Operation

The example in this topic uses PCI blocks. It describes how you can use a
Remote Terminal and Bus Controller in a model. This model combines the
three models, RTInit.md1l, RTSample.mdl and BCSample.mdl.

RTBCSample runs on a target PC with a multifunction board. It shows how to
configure and use a single board as a Bus Controller and Remote Terminal.
You can also run this model in one target PC with two different Condor
Engineering 1553 boards.

51 rRTBCSample * _ ol x|
File Edit W“ew Simulation Format Tools Help
PC-1553 PCI-1553
IC':'H‘Ij'or 5 > RTCIOI:‘t"jOIr' & ! .
nitialize nitialize f : - :
Channel 4 RT1AE Teminatord This modelwill work on & multifunction PC-1553 board.
1562 Init 1862 RT Init
PC-1553
Candor
RT Receive dauble H
Chan 1: 1-R-2-1 - .
- inMas Data Type Conversion3 FCI-1552
15632 Receive 1 - Condar
uint1G L 3 - [
RT Send
Clock Data Twpe Conwversion Chan 1: 1-T-3-1
— 1553 Send
Constanti -!
n Multiport
Data T [2
Sine Waye 23 Type Conversion it
1553
Create BC L ol 1552 1562 PCI-1552
f Encode Encode Condor
Message List L L L 1 1
BC Meszage 1 ™ BC Meszage 2 ™ Buz Cantroller
BC List 1-R-3-1 1-T-3-1 Send

Constant

Ready

Encode 1553 Message

Encode 1553 Message

1

Buz Controller

Target Scope

Voo X Id: 2

KRR :
. L S Decode BC Status u]

Fulse Lista Type Conversion 1663 Temmninatard |" Message Status No Responss Seope (xPCI1

Generatar L Decode 5 -
Decode 1553 Status
BC Message 2 b | Target Scope
L

Id: 1

Decode 1553 Message

Terminator2

Scope (xFC)

[100%4 [[|FixedStepDiscrete v

In this example, the two Encode BC Message blocks each create a message, for
a total of two, in the list. The message created in the first Encode BC Message
block is a receive message. Note, the direction of a message is always from
the point of view of the Remote Terminal. The Direction parameter of the
block has a value of R (BC->RT). The 1553 Encode BC Message block creates

11-9

11 MILSTD-1553 Support

11-10

message 1, one 16-bit word, to be sent to Remote Terminal 1, subaddress 3.
This word has a value of either 1 or 2. This is because the Pulse Generator
outputs either O or 1, to which a constant value 1 is added.

Message 2 of Bus Controller message list is a command for Remote Terminal
1, subaddress 3, to send one word. From the RTSample model, that data word
comes back containing either the clock or the sine wave data.

The PCI-1553 Bus Controller Send block takes a fully formed list of message
buffers and sends it. It waits for the messages to be sent and the response to
be received. The PCI-1553 Bus Controller Send block has a programmable
maximum wait time parameter (Maximum wait time). In this model, the
maximum wait time is 1000 microseconds.

The response message list from the PCI-1553 Bus Controller Send block has
the same length as the list that was sent. The responses are found in the same
position in the list as the corresponding command. In this case, the command
to the Remote Terminal to send data is message number 2. The data that is
returned is also message number 2 in the response list. In this example, the
Decode BC Message block check message 2 only. Decode BC Message blocks
can be in any order on the list. To avoid confusion, put them in numerical
order. This example does not check message 1. You can add another Decode
BC Message block to check message 1. In this case, only the status is useful
because the data is exactly what was sent.

The Decode BC Message block has the following outputs.

® | — Message list passed to other Decode BC Message blocks. If there are
no other Decode BC Message blocks, connect the signal to a terminator or
ground.

e S — Status information. The Decode BC Status block extracts individual
status bits from this status. To get multiple status bits, use multiple Decode
BC Status blocks and feed, in parallel, the same signal to the S ports.

® D — A vector of 32 short integers with the data from that message. Output
from the Decode BC Message block always has the maximum message
width of 32 uint16 values. The actual message determines how many of
these are significant. In this example, only the first value is significant.
The block sends the last 31 values to a terminator.

Introduction

E! BMSample *

Bus Monitor Operation

This topic uses PCI-1553 blocks. It describes how you can use a Bus Monitor in
a model. The Bus Monitor operation outputs a list containing all the messages
seen on the specified bus since the last time it was called. The BMSample model
show how to set up a simple bus monitor that looks for the messages in the
preceding examples (RTSample.mdl, BCSample.mdl, and RTBCSample.mdl).

Run this example on a target PC that has a PCI-1553 board. Replace
the hardware specific blocks with the correct blocks if your hardware

configuration is different.

File Edit ‘iew Simulation Format Tools Help
PCI-1553
Condor } .
s
Initialize
Channel 1 Terminator
1663 Init 1 1852 'T- TerminatoG
L Salect Tarminators
B hMeszage s > .
L Terminataorg Target Scope
Salect 1552 BM Message 1 1d: 1
L Seope (xPCY
PCI-1553 1553 T » 5 Terminator2
Conder 1 L Select 5 = —
Bus Moanitar Btd hieszage 13 |Terminator
L Tarminatord
Blus Monitor Select 1553 BM Message Target Scope
Id: 2
Scope (xPCY1
Terminatar
Ready [100% | | |Fixedstephiscrete i

The PCI-1553 Initialize block configures a Bus Monitor on channel 1 of the
board. This block also tells the board to monitor bus A. This PCI-1553 Bus
Monitor block specifies a maximum of 10 messages to receive in a list.

The Select BM Message block picks a message with specified properties out of
this list. The Message selection mode parameter of the block provides a finite

11-11

11 MILSTD-1553 Support

list of message properties. In this model, the selected property is BC->RT
or RT->BC.

The Select BM Message block has the following outputs:

L — Message list passed to other Select BM Message blocks. If there no other
Select BM Message blocks, connect the signal to a terminator or ground.

T — Time that the board believes that the message was received on the bus.
This is the time since the board was started in microseconds, presented as
a double. The clock might run at a slightly different rate than the model
execution timer. This implies that this time is likely different from the xPC
Target execution time.

S — Status information. This contains seven uint32 entries with status
and command information.

D — A vector of 32 uint16 entries with the data from that message. This
always outputs all 32 entries, even if only some of the entries are defined.

11-12

Boards and Blocks — Alphabetical List

Boards and Blocks — Alphabetical List

11-13

Condor PCI/QPCI-1553

Board

General
Description

11-14

Condor PCI/QPCI-1553

The commercial and aircraft transport industry use the MIL-STD-1553
protocol. The MIL-STD-1553 driver library allows xPC Target
applications to connect to an MIL-STD-1553 bus network to send and
receive messages of up to 32 16-bit words. This chapter assumes that
you are familiar with the MIL-STD-1553 standard.

The xPC Target block library supports the MIL-STD-1553 protocol with
the following Condor Engineering boards. These board interface a
target PC to an MIL-STD-1553 data bus. These boards support the PCI
and high-density PCI (QPCI) bus.

¢ Condor Engineering PCI-1553 — This is available with 1 or 2
channels as either a single function or multi-function configuration.
The multi-function version supports simultaneous use of the Bus
Controller, Bus Monitor, and Remote Terminal functions. The
single function version emits an error if more than one function is
initialized. PCI-1553 blocks support up to two channels for this board.

¢ Condor Engineering QPCI-1553 — This board is available with
1, 2, or 4 channels as either a single function or multi-function
configuration. The multi-function version supports simultaneous use
of the Bus Controller, Bus Monitor, and Remote Terminal functions.
The single function version emits an error if more than one function
is initialized. This board also supports a loopback mode for testing.
QPCI-1553 blocks support up to four channels for this board.

The block library provides the following driver blocks to support these
boards:

Condor PCI-1553 Bus Controller Send
Condor PCI-1553 Bus Monitor
Condor PCI-1553 Initialize

Condor PCI-1553 RT Initialize
Condor PCI-1553 RT Receive

Condor PCI/QPCI-1553

Board
Characteristics

¢ Condor PCI-1553 RT Send

¢ Condor QPCI-1553 Bus Controller Send
e Condor QPCI-1553 Bus Monitor

® Condor QPCI-1553 Initialize

e Condor QPCI-1553 RT Initialize

¢ Condor QPCI-1553 RT Receive

¢ Condor QPCI-1553 RT Send

Use the following utility blocks to format the Bus Controller messages:

Condor 1553 Create BC Message List
Condor 1553 Decode BC Message
Condor 1553 Decode BC Status
Condor 1553 Encode BC Message
Condor 1553 Select BM Message

Board name PCI/QPCI-1553
Manufacturer Condor Engineering
Bus type PCI

Multiple board support Yes

11-15

Condor 1553 Create BC Message List

Purpose
Library

Description

Block
Parameters

See Also

11-16

Condor Create Bus Controller (BC) Message List block
xPC Target Library for MIL-STD-1553

This block allocates space for a BC message list. It sets all messages
in the list to no-op. This implies that the execution of a message on a
given time step requires that a 1553 Encode BC Message block execute
on that time step. The 1553 Create BC Message List block performs a
clearing operation that allows you to control when a message is sent by
placing 1553 Encode BC Message blocks in enabled subsystems.

Number of message buffers
Enter the number of message buffers for the list. This block
allocates an empty list for these buffers in xPC Target memory.

Sample time

Enter the base sample time or a multiple of the base sample time.
Condor 1553 Encode BC Message
“Bus Controller Operation” on page 11-7

Condor 1553 Decode BC Message

Purpose
Library

Description

Block
Parameters

Condor 1553 Decode Bus Controller (BC) Message block
xPC Target Library for MIL-STD-1553

Each instance of this block extracts information out of one message in
the receive list. This block has three outputs.

L — Specifies the input and output message list passed to other Decode
BC Message blocks. If there are no other Decode BC Message blocks,
connect the signal to a terminator or ground.

S — The S output is a vector of six elements from the received message,
all bit packed with information:

control, commandi, statusi, command2, status2, overall status

These elements derive from the Condor Engineering

API_BC_MBUF structure, which is contained in the xPC Target file
matlab\toolbox\rtw\targets\xpc\target\build\xpcblocks\
include\busapi.h. See the Condor Engineering 1553 software user
documentation for details on this structure.

Use the Decode BC Status block to extract individual status bits from
this status. To get multiple status bits, use multiple Decode BC Status
blocks and feed, in parallel, the same signal to the S ports.

D — The D output is a vector of 32 short integers with the data from
that message. For a message sent to an RT (R direction), these values
are the ones sent. For a message from an RT (T direction), this contains
the values from the RT. You do not need to decode the received message
from an R message.

Message number
Enter the number of the message to decode.

Sample time
Enter the base sample time or a multiple of the base sample time.

11-17

Condor 1553 Decode BC Status

Purpose
Library

Description

Block
Parameters

11-18

Condor 1553 Decode Bus Controller (BC) Status block
xPC Target Library for MIL-STD-1553

This block extracts individual status bits from the status output of the
Decode BC Message block.

Status to read
From the list, choose a status to read. The Decode BC Status
block extracts individual status bits from the status (S) output of
the Decode BC Message block.

Sample time
Enter the base sample time or a multiple of the base sample time.

Condor 1553 Encode BC Message

Purpose
Library

Description

Block
Parameters

Condor 1553 Encode Bus Controller (BC) Message block
xPC Target Library for MIL-STD-1553

This block fills each message for any timestep during which the message
should be sent.

The Create BC Message List block allocates an empty list of message
buffers in xPC Target memory. Use the Encode BC Message block to
fill these messages.

Message number
Enter the number of the message to encode. Each BC message
needs to use a unique message number. This is the place in the
list to fill with this message.

Remote Terminal address 1 (Receive if RT-RT)
From the list, choose a Remote Terminal address 1.

Sub address 1 (Receive if RT-RT)
From the list, choose a Remote Terminal subaddress 1. Setting
this parameter to Send (0) mode command or Send (31) mode
command disables the Message word count parameter.

Remote Terminal address 2 (Transmit if RT-RT)
From the list, choose a Remote Terminal address 2. This is not
used if the Direction is R (BC->RT) or T (RT->BC).

Sub address 2 (Transmit if RT-RT)
From the list, choose a Remote Terminal subaddress 2. This 1s not
used if the Direction is R (BC->RT) or T (RT->BC).

Mode command
If the Sub address 1 is 0 or 31, from the list, choose a mode
command.

Message word count
Specify the number of uint16 words to send or receive.

11-19

Condor 1553 Encode BC Message

See Also

11-20

Direction
From the list, choose the encode direction. Choose from
e R (BC->RT)
e T (RT->BC)
e RT->RT

Inter message gap to next message (usec)
Specify the minimum amount of time, in microseconds, between

messages.

Output bus
From the list, choose output bus A or B that this message will

be sent on.

Sample time
Enter the base sample time or a multiple of the base sample time.

Condor 1553 Create BC Message List, Condor 1553 Decode BC Message

Condor 1553 Select BM Message

Purpose
Library
Description
Block

Input and
Outputs

Condor Select 1553 Bus Monitor (BC) Message block
xPC Target Library for MIL-STD-1553

This block picks a message with specified properties out of a Bus
Monitor list from the PCI-1553 Bus Monitor block.

This block has the following inputs and outputs:

L — The passed through message list

T — Time in microseconds at which this message was received

S — Status (seven component vector with contents)

® 1 message number
2 cmd1
3 respi
4 status 1
® 5 cmd 2
6 resp 2
7 status 2

Note that cmd1 and cmd2 contain address information in bit fields in the
16-bit integer.

cmdN=<RRRRR>T<SSSSS><CCCCC>

Where RRRRR is the 5-bit field with the remote terminal address. T is 1
if a transmit message, 0 if receive. S is the subaddress. C is the count.

Note that 5, 6, and 7 are only non-zero for the RT->RT messages.

D — 32 uint16 vector data. cmd 1 has the length of real data in the
low order 5 bits.

11-21

Condor 1553 Select BM Message

Block
Parameters

11-22

The block clears all status and data words to 0 if a matching message is
not found in the list.

Message selection mode
From the list, choose a message selection (filtering) mode

®* message number — By message number
® BC->RT or RT->BC — By Remote Terminal and subaddress
® RT->RT — By both Remote Terminal and subaddresses

Message number
Specify an index into a Bus Monitor list. Use this parameter if
you set Message selection mode to message number.

Remote Terminal 1
Specify the Remote Terminal from which to select the message.
Use this parameter if you set Message selection mode to one of
the following:

® BC->RT or RT->BC

® RT->RT (receive side)

Sub address 1
Specify the subaddress from which to select the message. Use
this parameter if you set Message selection mode to one of the
following:

® BC->RT or RT->BC

® RT->RT (receive side)

Remote Terminal 2
Specify the Remote Terminal from which to select the message.

Use this parameter if you set Message selection mode to
RT->RT (send side).

Condor 1553 Select BM Message

See Also

Sub address 2
Specify the subaddress from which to select the message. Use
this parameter if you set Message selection mode to RT->RT
(send side).

Direction
From the list, choose the encode direction. Use this parameter if
you set Message selection mode to BC->RT or RT->BC. Choose
from

® R (BC->RT) — Receive, from Bus Controller to Remote Terminal

® T (RT->BC) — Transmit, from Remote Terminal to Bus Controller

Sample time

Enter the base sample time or a multiple of the base sample time.
Enter -1 to inherit the sample time.

Condor PCI-1553 Bus Monitor

11-23

Condor PCI-1553 Bus Controller Send

Purpose
Library

Description

Block
Parameters

11-24

Condor PCI-1553 Bus Controller (BC) Send block
xPC Target Library for MIL-STD-1553

This block sends a list of messages to the specified channel on the board.
Before you construct the list of messages:

1 Allocate space for the list with the Condor 1553 Create BC Message
List block.

2 Fill in information about each message with Condor 1553 Encode
BC Message blocks.

Each instance of an Encode BC Message block fills in information for
a single message on the list. To ensure that all Encode BC blocks
execute before the Bus Controller Send block, daisy chain the Encode
BC Message block L signals.

The Bus Controller Send block allocates a list for the reception of
messages. This block can

® Read the set of messages and statuses from the last time a message
was sent before sending the new list.

® Send the new list and wait for a response.

In other words, for time step N, the output of the Send block is either the
response to time step N-1 or the response to time step N, chosen from
the Response mode parameter.

Channel
From the list, choose 1 or 2. This is the channel for this command
stream.

Condor PCI-1553 Bus Controller Send

Response mode
Choose from

¢ Read response to previous message then send new
message — Read the command buffers from the board before
sending the new ones.

* Send new message then wait and read response
— Transmit new message, then wait for response before
continuing.

See the Maximum wait time parameter to set the amount of
time the block should wait for a response.

Maximum wait time (microseconds)
Enter the maximum time that this block waits for the message
stream to be sent by the board. Use this parameter if the
Response mode parameter is set to Send new message then
wait and read response.

A reasonable maximum wait time is 1000 microseconds (1
millisecond). Note, this value should not exceed the sample time
except for failsafe instances. Exceeding the sample time will
trigger an execution overload.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

11-25

Condor PCI-1553 Bus Controller Send

11-26

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

Condor PCI-1553 Bus Monitor

Purpose
Library

Block
Parameters

Condor PCI-1553 Bus Monitor block
xPC Target Library for MIL-STD-1553

Channel
From the list, choose 1 or 2.

Maximum number of messages to receive
Enter the maximum number of messages this block should read
from the board.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpci

11-27

Condor PCI-1553 Initialize

Purpose
Library

Block
Parameters

11-28

Condor PCI-1553 Initialize block
xPC Target Library for MIL-STD-1553

Channel
From the list, select from 1 or 2. This is the channel to initialize
on the board.

Initialize for Bus Controller operation
Select this check box to perform Bus Controller initialization
for this channel. Selecting this check box enables the next four
parameters.

¢ Number of Bus Controller buffers to allocate — Enter the
number of buffers to allocate in onboard memory on the board.
This number must be greater than or equal to the longest string of
command buffers that the board will be given to process.

¢ Enable retries — Select this check box to enable automatic retries
when a message times out or has an error.

* No response timeout (microseconds) — Enter the number of
microseconds the board is to wait for a response from the Remote
Terminal. If the response from the Remote Terminal takes longer
than this time-out value, the board sets the NORESPONSE error
condition in the status returned from the command.

¢ Late response timeout (microseconds) — Enter the number of
microseconds the board is to wait for a response from the Remote
Terminal. If the response from the Remote Terminal takes longer
than this time-out value, the board sets the LATERESPONSE error
condition in the status returned from the command.

Initialize for Bus Monitor operation
Select this check box to initialize this channel for Bus Monitor
operation. You must select this check box to initialize the channel
for Bus Monitor operation. Selecting this check box enables the
parameters:

Condor PCI-1553 Initialize

® Monitor bus A — Select this check box to monitor bus A. You
can monitor either bus A, bus B, or both.

® Monitor bus B — Select this check box to monitor bus B. You
can monitor either bus B, bus A, or both.

¢ Number of monitor buffers to allocate — Enter the number
of at least as many buffers as you expect to see messages
between calls to the Bus Monitor block. If more messages
arrive than there are buffers, some messages will be lost and
not monitored.

Initialize for Remote Terminal operation
Select this check box to prepare the board to operate as a Remote
Terminal. If you select this check box, add the RT Initialize block
to the model to initialize the Remote Terminal. Connect the RT
Initialize block for the Remote Terminal to the S output of this
block.

Selecting this check box enables the parameter:

RT address 31 is Broadcast
Select this check box to enable the board to see messages to
Remote Terminal 31 as broadcast messages.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpci

11-29

Condor PCI-1553 RT Initialize

Purpose
Library

Description

Block
Parameters

11-30

Condor PCI-1553 RT Initialize block
xPC Target Library for MIL-STD-1553

Add an RT Initialize block for each Remote Terminal address for which
you want this board to accept commands. Because each of these blocks
must execute after the global board initialization, connect the S input
to either

e Main Condor PCI-1553 Initialize block for this board

e Another Condor PCI-1553 RT Initialize block that is connected to the
main Condor PCI-1553 Initialize block.

This connection carries the channel number and PCI slot information.

Remote Terminal
From the list, choose a Remote Terminal from 1 to 31. Choose the
terminal number that this initialization block is configuring.

Connect to bus A
Select this check box to have this Remote Terminal listen on bus
A. Choose both A and B if a message can come in on either bus.

Connect to bus B
Select this check box to have this Remote Terminal listen on bus
B. Choose both A and B if a message can come in on either bus.

Initial status
Enter the initial value of the status before any commands are
executed. The board maintains a status word that is sent to the
Bus Controller after command execution.

Initial BIT word
Enter the initial value of Built In Test (BIT) word. The Remote
Terminal sends this word in response to the Transmit BIT Word
mode code.

Condor PCI-1553 RT Initialize

Inhibit terminal flag
Select this check box to inhibit the Remote Terminal flag. This is
the initial value of the Inhibit Terminal Flag bit. This can be
changed from the Bus Controller with the Inhibit Terminal and
Override Inhibit Terminal mode codes. The terminal bit is one
of the hardware maintained bits in the status word.

Transmit sub addresses
Enter a vector of subaddresses to which this Remote Terminal
should respond. These are the subaddresses that can transmit
data when requested. Each element of the vector must correspond
to the corresponding element of the Legal transmit message
lengths vector. To enable the subaddress for the Remote
Terminal, include the subaddress in the vector.

A Remote Terminal only accepts a message if it has been directed
to accept messages of the same length. During initialization, the
board must receive a list of valid message lengths for each Remote
Terminal number.

Legal transmit message lengths
Enter a vector of transmit message lengths. This is a vector of bit
masks where each bit corresponds to a single message length.
Ensure the following:

¢ Each element of the vector must correspond to the
corresponding element of the Transmit sub addresses vector.

® To enable a transmit message, each element of the vector must
correspond to the corresponding element of the Legal receive
message lengths. Failure to do this prevents the subaddress
on this Remote Terminal from responding.

Because a message can have from 1 to 32 values in it, the block
uses a single 32-bit integer to control them. For ease of use, it
is recommended that you use the hex2dec function to specify
the bit mask in hexadecimal.

For example, to allow any length, enter

11-31

Condor PCI-1553 RT Initialize

11-32

hex2dec('ffffffff')

To allow a single message length, such as 5, enter

hex2dec (' 00000010 ")

because 2~ (5-1)=0x10. To allow message length N, this value
should be 2" (N-1).

The board does not accept a message with a disallowed length
and will send an error to the Bus Controller by returning a
status with the Message Error bit set.

Receive sub addresses

Enter a vector of the subaddresses that can accept a receive
message. Each element of the vector must correspond to the
corresponding element of the Legal receive message lengths
vector.

A Remote Terminal only accepts a message if it has been directed
to accept messages of the same length. During initialization, the
board must receive a list of valid message lengths for each Remote
Terminal number. To enable the subaddress for the Remote
Terminal, include the subaddress in the vector.

Legal receive message lengths

Enter a vector of receive message lengths. This is a vector of bit
masks where each bit corresponds to a single message length.
Ensure the following:

¢ Each element of the vector must correspond to the
corresponding element of the Transmit sub addresses vector.

¢ Each element of the vector must correspond to the
corresponding element of the Receive sub addresses vector.

¢ To enable a receive message, each element of the vector must
correspond to the corresponding element of the Legal transmit
message lengths. Failure to do this prevents the subaddress
on this Remote Terminal from responding.

Condor PCI-1553 RT Initialize

Because a message can have from 1 to 32 values in it, the block
uses a single 32-bit integer to control them. For ease of use, it
is recommended that you use the hex2dec function to specify
the bit mask in hexadecimal.

For example, to allow any length, enter

hex2dec('ffffffff')

To allow a single message length, such as 5, enter

hex2dec('00000010")

because 2" (5-1)=0x10. To allow message length N, this value
should be 2~ (N-1).

The board does not accept a message with a disallowed length
and will send an error to the Bus Controller by returning a
status with the Message Error bit set.

Sample time
Enter the base sample time or a multiple of the base sample time.

11-33

Condor PCI-1553 RT Receive

Purpose
Library

Note

Block
Parameters

11-34

Condor PCI-1553 Remote Terminal (RT) Receive
xPC Target Library for MIL-STD-1553

Your model might have multiple Remote Terminal Receive blocks. To
help you locate a particular block, the Remote Terminal Receive block
displays the number and address parameters.

PCI-1553
Candor
RT Receive
Chan 1: 1-R-3-2

1653 Receive

The block display has the format

remote terminal-R-subaddress-number of words

Remote terminal — Is the Remote Terminal parameter

R — Indicates receive command

Subaddress — Is the Sub address parameter

Number of words — Is the Number of words to receive parameter
A receive command for RT 1, sub address 3 to receive 2 words has the

layout 1-R-3-2.

Channel
From the list, select from 1 or 2. This is the channel for this
command stream. Select this value from the available channels
on the board.

Remote Terminal
From the list, choose a Remote Terminal from 1 to 31. Select the
Remote Terminal number for this message.

Condor PCI-1553 RT Receive

Sub address
From the list, choose a subaddress from 1 to 31. Select the sub
address for this message.

Number of words to receive
Enter the number of 16 bit integers to receive as the data part of
this message. This number must be between 1 and 32. The output
data vector will have this same vector width.

Note that if this Remote Terminal or subaddress might be sent
messages with different lengths, specify the longest message
length for this parameter. You must determine how much is
significant from content or some other means.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

11-35

Condor PCI-1553 RT Send

Purpose
Library

Description

11-36

Condor PCI-1553 Remote Terminal (RT) Send block
xPC Target Library for MIL-STD-1553

A Remote Terminal sends data only if it receives a transmit command
from the Bus Controller. This block prepares the board for the next
transmit command on this channel, Remote Terminal number, and
subaddress.

The data vector signal input to this block is copied to the board message
buffer that corresponds to the specified address. The input data vector
must have the same length as specified in the Number of words to
send parameter. The input vector can be either 16- or 32-bit signed or
unsigned data. The block only sends the bottom 16 bits of each element.

Your model might have multiple Remote Terminal Send blocks. To help
you locate a particular block, the Remote Terminal Send block displays
the number and address parameters.

FCI-1553

Condor

RT Send
Chan 1: 1-T-3-2

1553 Send

]

The block display has the format

remote terminal-T-subaddress-number of words

Remote terminal — Derives from the Remote Terminal parameter
T — Indicates transmit (or send) command
Subaddress — Derives from the Sub address parameter

Number of words — Derives from the Number of words to receive
parameter

A transmit command for RT 1, sub address 3 to send 2 words has the
layout 1-T-3-2.

Condor PCI-1553 RT Send

Block
Parameters

Channel
From the list, select from 1 or 2. Ensure that you have initialized
this channel with the PCI-1553 Initialize and RT Initialize blocks.

Remote Terminal
From the list, choose a Remote Terminal from 1 to 31. Select the
Remote Terminal number for this message.

Sub address
From the list, choose a subaddress from 1 to 31. Select the sub
address for this message.

Number of words to send
Enter the number of 16 bit integers to send as the data part of
this message. This number must be between 1 and 32. The input
data vector must have the same vector width.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

11-37

Condor QPCI-1553 Bus Controller Send

Purpose
Library

Description

Block
Parameters

11-38

Condor QPCI-1553 Bus Controller (BC) Send block
xPC Target Library for MIL-STD-1553

This block sends a list of messages to the specified channel on the board.
Before you construct the list of messages:

1 Allocate space for the list with the Condor 1553 Create BC Message
List block.

2 Fill in information about each message with Condor 1553 Encode
BC Message blocks.

Each instance of an Encode BC Message block fills in information for
a single message on the list. To ensure that all Encode BC blocks
execute before the Bus Controller Send block, daisy chain the Encode
BC Message block L signals.

The Bus Controller Send block allocates a list for the reception of
messages. This block can

® Read the set of messages and statuses from the last time a message
was sent before sending the new list.

® Send the new list and wait for a response.

In other words, for time step N, the output of the Send block is either the
response to time step N-1 or the response to time step N, chosen from
the Response mode parameter.

Channel
From the list, choose 1, 2, 3, or 4. This is the channel for this
command stream.

Condor QPCI-1553 Bus Controller Send

Response mode
Choose from

¢ Read response to previous message then send new
message — Read the command buffers from the board before
sending the new ones.

* Send new message then wait and read response
— Transmit new message, then wait for response before
continuing.

See the Maximum wait time parameter to set the amount of
time the block should wait for a response.

Maximum wait time (microseconds)
Enter the maximum time that this block waits for the message
stream to be sent by the board. Use this parameter if the
Response mode parameter is set to Send new message then
wait and read response.

A reasonable maximum wait time is 1000 microseconds (1
millisecond). Note, this value should not exceed the sample time
except for failsafe instances. Exceeding the sample time will
trigger an execution overload.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)

If only one board of this type is in the target PC, enter
-1

to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with

11-39

Condor QPCI-1553 Bus Controller Send

this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

11-40

Condor QPCI-1553 Bus Monitor

Purpose
Library

Block
Parameters

Condor QPCI-1553 Bus Monitor block
xPC Target Library for MIL-STD-1553

Channel
From the list, choose 1, 2, 3, or 4.

Maximum number of messages to receive
Enter the maximum number of messages this block should read
from the board.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

11-41

Condor QPCI-1553 Initialize

Purpose
Library

Block
Parameters

11-42

Condor QPCI-1553 Initialize block
xPC Target Library for MIL-STD-1553

Channel
From the list, select from 1, 2, 3, or 4. This is the channel to
initialize on the board.

Loopback enabled
Select this check box to route signals to the testbus on the board.
This is a loopback connection between the four channels on the
board without the need for external wiring. This is useful for
testing.

Initialize for Bus Controller operation
Select this check box to perform Bus Controller initialization
for this channel. Selecting this check box enables the next four
parameters.

Initialize for Bus Monitor operation
Select this check box to initialize this channel for Bus Monitor
operation. You must select this check box to initialize the channel
for Bus Monitor operation. Selecting this check box enables the
parameters:

® Monitor bus A — Select this check box to monitor bus A. You can
monitor either bus A, bus B, or both.

® Monitor bus B — Select this check box to monitor bus B. You can
monitor either bus B, bus A, or both.

¢ Number of monitor buffers to allocate — Enter the number of at
least as many buffers as you expect to see messages between calls
to the Bus Monitor block. If more messages arrive than there are
buffers, some messages will be lost and not monitored.

Initialize for Remote Terminal operation
Select this check box to prepare the board to operate as a Remote
Terminal. If you select this check box, add the RT Initialize block

Condor QPCI-1553 Initialize

to the model to initialize the Remote Terminal. Connect the RT
Initialize block for the Remote Terminal to the S output of this
block.

Selecting this check box enables the parameter:

RT address 31 is Broadcast
Select this check box to enable the board to see messages to
Remote Terminal 31 as broadcast messages.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

11-43

Condor QPCI-1553 RT Initialize

Purpose
Library

Description

Block
Parameters

11-44

Condor QPCI-1553 RT Initialize block
xPC Target Library for MIL-STD-1553

Add an RT Initialize block for each Remote Terminal address for which
you want this board to accept commands. Because each of these blocks
must execute after the global board initialization, connect the S input
to either

e Main Condor QPCI-1553 Initialize block for this board

® Another Condor QPCI-1553 RT Initialize block that is connected to
the main Condor QPCI-1553 Initialize block.

This connection carries the channel number and PCI slot information.

Remote Terminal
From the list, choose a Remote Terminal from 1 to 31. Choose the
terminal number that this initialization block is configuring.

Connect to bus A
Select this check box to have this Remote Terminal listen on bus
A. Choose both A and B if a message can come in on either bus.

Connect to bus B
Select this check box to have this Remote Terminal listen on bus
B. Choose both A and B if a message can come in on either bus.

Initial status
Enter the initial value of the status before any commands are
executed. The board maintains a status word that is sent to the
Bus Controller after command execution.

Initial BIT word
Enter the initial value of Built In Test (BIT) word. The Remote
Terminal sends this word in response to the Transmit BIT Word
mode code.

Condor QPCI-1553 RT Initialize

Inhibit terminal flag
Select this check box to inhibit the Remote Terminal flag. This is
the initial value of the Inhibit Terminal Flag bit. This can be
changed from the Bus Controller with the Inhibit Terminal and
Override Inhibit Terminal mode codes. The terminal bit is one
of the hardware maintained bits in the status word.

Transmit sub addresses
Enter a vector of subaddresses to which this Remote Terminal
should respond. These are the subaddresses that can transmit
data when requested. Each element of the vector must correspond
to the corresponding element of the Legal transmit message
lengths vector. To enable the subaddress for the Remote
Terminal, include the subaddress in the vector.

A Remote Terminal only accepts a message if it has been directed
to accept messages of the same length. During initialization, the
board must receive a list of valid message lengths for each Remote
Terminal number.

Legal transmit message lengths
Enter a vector of transmit message lengths. This is a vector of bit
masks where each bit corresponds to a single message length.
Ensure the following:

¢ Each element of the vector must correspond to the
corresponding element of the Transmit sub addresses vector.

® To enable a transmit message, each element of the vector must
correspond to the corresponding element of the Legal receive
message lengths. Failure to do this prevents the subaddress
on this Remote Terminal from responding.

Because a message can have from 1 to 32 values in it, the block
uses a single 32-bit integer to control them. For ease of use, it
is recommended that you use the hex2dec function to specify
the bit mask in hexadecimal.

For example, to allow any length, enter

11-45

Condor QPCI-1553 RT Initialize

11-46

hex2dec('ffffffff')

To allow a single message length, such as 5, enter

hex2dec (' 00000010 ")

because 2~ (5-1)=0x10. To allow message length N, this value
should be 2" (N-1).

The board does not accept a message with a disallowed length
and will send an error to the Bus Controller by returning a
status with the Message Error bit set.

Receive sub addresses

Enter a vector of the subaddresses that can accept a receive
message. Each element of the vector must correspond to the
corresponding element of the Legal receive message lengths
vector. To enable the subaddress for the Remote Terminal,
include the subaddress in the vector.

A Remote Terminal only accepts a message if it has been directed
to accept messages of the same length. During initialization, the
board must receive a list of valid message lengths for each Remote
Terminal number.

Legal receive message lengths

Enter a vector of receive message lengths. This is a vector of bit
masks where each bit corresponds to a single message length.
Ensure the following:

¢ Each element of the vector must correspond to the
corresponding element of the Transmit sub addresses vector.

¢ Each element of the vector must correspond to the
corresponding element of the Receive sub addresses vector.

¢ To enable a receive message, each element of the vector must
correspond to the corresponding element of the Legal transmit
message lengths. Failure to do this prevents the subaddress
on this Remote Terminal from responding.

Condor QPCI-1553 RT Initialize

® Because a message can have from 1 to 32 values in it, the block
uses a single 32-bit integer to control them. For ease of use, it
is recommended that you use the hex2dec function to specify
the bit mask in hexadecimal.

For example, to allow any length, enter

hex2dec('ffffffff')

To allow a single message length, such as 5, enter

hex2dec('00000010")

because 2" (5-1)=0x10. To allow message length N, this value
should be 2~ (N-1).

The board does not accept a message with a disallowed length
and will send an error to the Bus Controller by returning a
status with the Message Error bit set.

Sample time
Enter the base sample time or a multiple of the base sample time.

11-47

Condor QPCI-1553 RT Receive

Purpose
Library

Note

Block
Parameters

11-48

Condor QPCI-1553 Remote Terminal (RT) Receive block
xPC Target Library for MIL-STD-1553

Your model might have multiple Remote Terminal Receive blocks. To
help you locate a particular block, the Remote Terminal Receive block
displays the number and address parameters.

QFPCI-1553
Candor
RT Receive
Chan 1: 1-R-3-2

1553 Receive

The block display has the format

remote terminal-R-subaddress-number of words

Remote terminal — Is the Remote Terminal parameter

R — Indicates receive command

Subaddress — Is the Sub address parameter

Number of words — Is the Number of words to receive parameter
A receive command for RT 1, sub address 3 to receive 2 words has the

layout 1-R-3-2.

Channel
From the list, select from 1 to 4. This is the channel for this
command stream. Select this value from the available channels
on the board.

Remote Terminal
From the list, choose a Remote Terminal from 1 to 31. Select the
Remote Terminal number for this message.

Condor QPCI-1553 RT Receive

Sub address
From the list, choose a subaddress from 1 to 31. Select the sub
address for this message.

Number of words to receive
Enter the number of 16 bit integers to receive as the data part of
this message. This number must be between 1 and 32. The output
data vector will have this same vector width.

Note that if this Remote Terminal or subaddress might be sent
messages with different lengths, specify the longest message
length for this parameter. You must determine how much is
significant from content or some other means.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

11-49

Condor QPCI-1553 RT Send

Purpose
Library

Description

11-50

Condor QPCI-1553 Remote Terminal Send (RT) block
xPC Target Library for MIL-STD-1553

A Remote Terminal sends data only if it receives a transmit command
from the Bus Controller. This block prepares the board for the next
transmit command on this channel, Remote Terminal number, and
subaddress.

The data vector signal input to this block is copied to the board message
buffer that corresponds to the specified address. The input data vector
must have the same length as specified in the Number of words to
send parameter. The input vector can be either 16- or 32-bit signed or
unsigned data. The block only sends the bottom 16 bits of each element.

Your model might have multiple Remote Terminal Send blocks. To help
you locate a particular block, the Remote Terminal Send block displays
the number and address parameters.

QFCI-15853
Condor
RET Send
Chan 1:1-T-3-2

1553 Send

=]

The block display has the format

remote terminal-T-subaddress-number of words

Remote terminal — Is the Remote Terminal parameter

T — Indicates transmit (or send) command

Subaddress — Is the Sub address parameter

Number of words — Is the Number of words to receive parameter

A transmit command for RT 1, sub address 3 to send 2 words has the
layout 1-T-3-2.

Condor QPCI-1553 RT Send

Block
Parameters

Channel
From the list, select from 1 to 4. Ensure that you have initialized
this channel with the PCI-1553 Initialize and RT Initialize blocks.

Remote Terminal
From the list, choose a Remote Terminal from 1 to 31. Select the
Remote Terminal number for this message.

Sub address
From the list, choose a subaddress from 1 to 31. Select the sub
address for this message.

Number of words to send
Enter the number of 16 bit integers to send as the data part of
this message. This number must be between 1 and 32. The input
data vector must have the same vector width.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

11-51

Condor QPCI-1553 RT Send

11-52

Parallel Ports

e “Using Parallel Ports” on page 12-2
¢ “Boards and Blocks — Alphabetical List” on page 12-6

12 Parallel Ports

Using Parallel Ports

12-2

In this section...

“Introduction” on page 12-2

“Using the Parallel Port as an Interrupt Source” on page 12-3

“Using Add-On Parallel Port Boards” on page 12-4

Introduction

Most target PCs have a parallel port that you can use for a variety of
devices. The xPC Target block library provides blocks that enable you to
use the parallel ports of a target PC for digital input and output, and source
interrupts.

Warning The parallel port is part of the motherboard on many
PCs. Be careful when configuring the port and connecting external
hardware to the port. Incorrect connections to the port might
damage your PC.

The xPC Target parallel port blocks assume that the connector to the parallel
port has one 25-pin connector whose pins have the following designations:

Eight data pins

Five status pins

Four control pins

Eight ground pins

Function {Channel| 1 | 2 | 3 |4 |5 | 6 | 7 | 8 | Additional
Bit o123 |a|5|6]7|Pins

Digital Input 02 |03 |04 (05 |06 [07| 08|09

Digital Output 02 |03 |04 [05 |06 [07| 08|09

Digital Input 15 (13 |12 | 10 | 11

(Status)

Using Parallel Ports

Function |Channel| 1 | 2 | 3 | 4 Additional
Bit o|1]2]3 e
Digital Output 01 |14 | 16 | 17
(Control)
Interrupt 10
1
co 14| C1
DO | 2
15| S3
D1] 3
16| C2
D2 | 4
17| C3
D3| 5
18| Gnd
D4 | 6
19| Gnd
DS | 7 20| Gnd
n
D6 | 8
21| Gnd
D7 | 9
22| Gnd
S6 | 10
23| Gnd
S7 | 11
24| Gnd
S5 | 12
25| Gnd
S4 | 13

Using the Parallel Port as an Interrupt Source

To use the parallel port as an interrupt source, use pin 10 of the parallel port

as the interrupt source. Configure the xPC Target model as follows:

1 Select Simulation > Configuration Parameters > xPC Target

options.

2 In the Execution options pane:

* From Execution mode, select Real-Time.

¢ From Real-time interrupt source, select the IRQ level (typically 7).

12-3

12 Parallel Ports

12-4

* From I/O board generating the interrupt, select Parallel Port.

¢ In PCI slot (-1: autosearch) or ISA base address, enter the base
address of the parallel port (typically 0x378).

If you want to use the Async IRQ Source block, you do not have to configure
the model. Instead, you can set the Async IRQ Source block parameters as
follows:

¢ TRQ line number — Select the IRQ level (typically 7).

¢ Allow preemption of function-call subsystem — Set as you wish.

¢ T/O board generating the interrupt — Select Parallel Port.

e PCI slot — Enter the base address of the parallel port (typically 0x378).

Using Add-On Parallel Port Boards

To use an add-on parallel port board with the parallel port blocks, enter the
appropriate base address for the board. To get the base address of a board,
and configure the parallel port block with that as follows:

1 To get the base address of a board, in the MATLAB Command Window, use
the getxpcpci function with the 'verbose' option. For example

getxpcpci('verbose')

2 Identify the base address for the add-on parallel port board.

3 In your model, open the parallel port block and set the value of the Base
address parameter to Other.

The Alternate base address parameter is displayed.

4 In the Alternate base address parameter, enter the base address you
identified in step 2.

5 Configure the rest of the block as desired.

Using Parallel Ports

Note You cannot use add-on parallel port boards as interrupt sources. You
also cannot trigger the execution of a model with these boards.

12-5

12 Parallel Ports

Boards and Blocks — Alphabetical List

12-6

Parallel Port Digital Input

Purpose

Library

Scaling
Input to
Output

Block
Parameters

Parallel Port Digital Input block

xPC Target Library for Parallel Port

Hardware Input Block Output Data

Type

TTL Double (Format:8
1-bit Channels)

uint8 (Format:One
8-bit Port)

Base address

Scaling

Double:
TTL low = 0.0

TTL high = 1.0

uint8:

TTL low
corresponding bit
is clear

TTL high
corresponding bit
is set

Select a parallel port base address. This address depends on the
PC BIOS. From the list, select one of the following. If your base
address is not one of the supplied standard base addresses, select
Other and enter your base address in Alternate base address.

® 0x3bc
* 0x378
® 0x278
e Other

Alternate base address

Enter an alternate parallel port base address, in hexadecimal.
This parameter appears only if you select Other for Base

address. For example,

0x300

12-7

Parallel Port Digital Input

Format
From the list, select one of the following modes to specify how
to treat data:

® 8 1 bit Channels

Treats data as individual bits. Configures block to accept up
to eight 1-bit channels.

® One 8 bit Port

Treats data as a single byte. Configures block to accept one
8-bit port.

Channels
Enter a vector of numbers between 1 and 8. This parameter
appears only if you select 8 1 bit Channels for Format. For
example,

(1, 3]

Sample time
Enter the base sample time or a multiple of the base sample time.

12-8

Parallel Port Digital Input Status Bits

Purpose

Library

Scaling
Input to
Output

Block
Parameters

Parallel Port Digital Input Status Bits block

xPC Target Library for Parallel Port

Hardware Input

TTL

Base address

Block Output Data
Type

Double (Format:5
1-bit Channels)

uint8 (Format:One
5-bit Port)

Scaling

Double:
TTL low = 0.0

TTL high = 1.0

uint8:

TTL low
corresponding bit
is clear

TTL high
corresponding bit
is set

Select a parallel port base address. This address depends on the
PC BIOS. From the list, select one of the following. If your base
address is not one of the supplied standard base addresses, select
Other and enter your base address in Alternate base address.

® 0x3bc
* 0x378
® 0x278
e Other

12-9

Parallel Port Digital Input Status Bits

Alternate base address
Enter an alternate parallel port base address, in hexadecimal.
This parameter appears only if you select Other for Base
address. For example,

0x300

Format
From the list, select one of the following modes to specify how
to treat data:

® 5 1 bit Channels

Treats data as individual bits. Configures block to accept up
to five 1-bit channels.

® One 5 bit Port

Treats data as a single byte. Configures block to accept one
5-bit port.

Channels
Enter a vector of numbers between 1 and 5. This parameter
appears only if you select 5 1 bit Channels for Format. For
example,

(1, 3]

Sample time
Enter the base sample time or a multiple of the base sample time.

12-10

Parallel Port Digital Output

Purpose

Library

Scaling
Output to
Input

Block
Parameters

Parallel Port Digital Output block

xPC Target Library for Parallel Port

Hardware Output Block Input Data
Type

TTL Double (Format:8
1-bit Channels)

uint8 (Format:One
8-bit Port)

Base address

Scaling

Double:
< 0.5 =TTL low

> 0.5 = TTL high

uint8:
Bit clear = TTL low

Bit set = TTL high

Select a parallel port base address. This address depends on the
PC BIOS. From the list, select one of the following. If your base
address is not one of the supplied standard base addresses, select
Other and enter your base address in Alternate base address.

® 0x3bc
* 0x378
® 0x278
e Other

Alternate base address

Enter an alternate parallel port base address, in hexadecimal.
This parameter appears only if you select Other for Base

address. For example,

0x300

12-11

Parallel Port Digital Output

12-12

Format

From the list, select one of the following modes to specify how
to treat data:

® 8 1 bit Channels

Treats data as individual bits. Configures block to accept up
to eight 1-bit channels.

® One 8 bit Port

Treats data as a single byte. Configures block to accept one
8-bit port.

Channels

Enter a vector of numbers between 1 and 8. This parameter
appears only if you select 5 1 bit Channels for Format. For
example,

(1, 3]

Initial value vector

The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started.

Final action vector

The final action vector controls the behavior of the channel at
model termination. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
setting is used for all channels. If you specify a value of 1, the
corresponding channel is reset to the value specified in the initial
value vector. If you specify a value of -1, the block sets the
channel to the value specified in the Final value vector value
for that channel. If you specify a value of 0, the channel remains
at the last value attained while the model was running.

Parallel Port Digital Output

Final value vector
The final value vector contains the final value for each output
channel. Enter a scalar or a vector that is the same length as the
channel vector. If you specify a scalar value, that setting is used
for all channels. If the Final action vector is -1, the block sets
the channel to this value on model termination.

Sample time
Enter the base sample time or a multiple of the base sample time.

12-13

Parallel Port Digital Output Control Bits

Purpose

Library

Scaling
Output to
Input

Block
Parameters

12-14

Parallel Port Digital Output Control Bits block

xPC Target Library for Parallel Port

Hardware Output Block Input Data Scaling

Type
TTL Double (Format:4 Double:
1-bit Channels) < 0.5 =TTL low
> 0.5 = TTL high
uint8 (Format:One uint8:
4-bit Port) Bit clear = TTL low

Bit set = TTL high

Base address
Select a parallel port base address. This address depends on the
PC BIOS. From the list, select one of the following. If your base
address is not one of the supplied standard base addresses, select
Other and enter your base address in Alternate base address.

® 0x3bc
* 0x378
® 0x278
e Other

Alternate base address
Enter an alternate parallel port base address, in hexadecimal.
This parameter appears only if you select Other for Base
address. For example,

0x300

Parallel Port Digital Output Control Bits

Format
From the list, select one of the following modes to specify how
to treat data:

® 4 1 bit Channels

Treats data as individual bits. Configures block to accept up
to four 1-bit channels.

® One 4 bit Port

Treats data as a single byte. Configures block to accept one
4-bit port.

Channels
Enter a vector of numbers between 1 and 4. This parameter
appears only if you select 4 1 bit Channels for Format. For
example,

(1, 3]

Initial value vector
The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started.

Final action vector
The final action vector controls the behavior of the channel at
model termination. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
setting is used for all channels. If you specify a value of 1, the
corresponding channel is reset to the value specified in the initial
value vector. If you specify a value of -1, the block sets the
channel to the value specified in the Final value vector value
for that channel. If you specify a value of 0, the channel remains
at the last value attained while the model was running.

12-15

Parallel Port Digital Output Control Bits

12-16

Final value vector
The final value vector contains the final value for each output
channel. Enter a scalar or a vector that is the same length as the
channel vector. If you specify a scalar value, that setting is used
for all channels. If the Final action vector is -1, the block sets
the channel to this value on model termination.

Sample time
Enter the base sample time or a multiple of the base sample time.

SAE J1939

e “SAE J1939 Blocks” on page 13-2
¢ “Blocks — Alphabetical List” on page 13-3

13 sar 1939

SAE J1939 Blocks

13-2

The xPC Target J1939 blocks enable you to send and receive messages on
a CAN network using the SAE J1939 message protocol. Before you start,
provide the J1939 database in .dbc format.

Note the following:

¢ These blocks support only messages that do not use the J1939 transport
protocol.

® These blocks do not support address claim.

® You must use the FIFO mode of the Softing CAN hardware with these
blocks.

The j1939example model illustrates how to use the xPC Target J1939 blocks.
Note that the demo references a J1939 database file, 1939.dbc, which you
must provide.

Blocks — Alphabetical List

Blocks — Alphabetical List

13-3

J1939 Database Setup

Purpose
Library

Description

Block
Parameters

13-4

J1939 Database Setup
xPC Target Library for CAN/J1939

The J1939 Database Setup block identifies the user-supplied database
for the J1939 block set. Use one block per model.

Block Inputs

None

Block Outputs
None
J1939 database file

Specify the J1939 database location and file name, for example
'd1939.dbc".

This file defines the J1939 message set and is in a format defined
by Vector Informatik GmbH.

J1939 Message Triggering

Purpose
Library

Description

Block
Parameters

J1939 Message Triggering
xPC Target Library for CAN/J1939

The J1939 Message Triggering block manages the multiple trigger
conditions possible for triggering the transmission of a J1939 message.

Block Inputs
This block has the following input ports:
Enable
Receives the signal that indicates when the block is enabled.

Request
Receives the signal that indicates a request to send has been
received.

Active
Indicates when a message is in the active state.

Change
Receives the signal whose change triggers the sending of a
message.

Block Outputs
This block has the following output ports:
Message Enable
Signal of type double that is set to 1 when the message should

be packed. It is typically connected to the input port of a J1939
Pack block.

Repetition
From the list, select:

® On Request Only

® Engine Speed Based

13-5

J1939 Message Triggering

®* Time Based

Repeat on Interval
Select this check box to repeat at the interval specified in the
Repetition Interval parameter.

Repetition Interval
Specify the enabled repetition interval in milliseconds. The
repetition interval should be an integer multiple of the model
update rate.

Change Interval on External Active Signal
Select this check box to enable the message to repeat at the
interval specified in Interval when Active when the external
signal is active.

Interval when Active
Enter the active repetition interval in milliseconds. The interval
should be an integer multiple of the model update rate.

Send on Change
Select this check box to send the message when the input signal
that is wired to the change port changes by the value in the
Change threshold parameter.

Change Threshold
Enter the threshold for message transmission to any change (Any)
or a change greater than 10% (10%).

Minimum Change Interval
Enter a minimum change interval.

13-6

J1939 Pack

Purpose
Library

Description

Block
Parameters

J1939 Pack
xPC Target Library for CAN/J1939

The J1939 Pack block assembles a message suitable for sending over
the CAN network.

Block Inputs

The block input signal indicates when the message should be sent. You
can connect this signal to a J1939 Message Triggering block or to a user
selected block. When the signal is 1, the block packs a new message
from the current signal input values.

The other input ports are dynamic and depend on the value of the PGN
value of the message. All ports are of type double.

Block Outputs

The single output is a vector of unsigned bytes of variable length. This
output is typically connected to the input of the J1939 Transmit block.

PGN
Select the message that this block unpacks. From the list, select
a parameter group number (PGN). The block automatically
creates input ports according to the number and type of suspect
parameter numbers (SPNs) that correspond to the PGN.

Priority
Enter the three priority bits of this message. Enter a message
priority from 0 to 7, with 0 being the highest and 7 being the
lowest.

Destination Address
Enter the destination address for destination-specific messages.
See the SAE J1939-21 for information.

13-7

J1939 Receive

Purpose J1939 Receive
Library xPC Target Library for CAN/J1939

Description The J1939 Receive block receives the PGNs.

Block Inputs

Connect the J1939 Receive block directly to the output of a CAN FIFO
Read block. The input signal is a matrix of size m x 6, where m is the
FIFO read depth defined in the FIFO Read block dialog box. Each
row with its six elements contains all the information defining a CAN
message:

Port

Identifier
Event type
Data frame size
Timestamp
Data

See one of the FIFO Read blocks (for example, Softing CAN-AC2-PCI
with Philips SJA1000 FIFO Read) for a detailed description of these
elements.

Block Outputs

The number of parameter group numbers (PGNs) in the PGN list
parameter determines the number of block outputs. The block creates
and labels an output port for each PGN in the list. Each output signal is
a vector of unsigned bytes with a length of 16. The bytes are defined

as follows:
Bit Description
y[1] Protocol data unit format (PDU format or PF)
y[2] Group extension if PF is greater than 240, else
destination address (DA)

13-8

J1939 Receive

Bit Description
y[3] Source address
y[4] Timestamp[0]
y[5] Timestamp[1]
y[6] Timestamp[2]
y[7] Timestamp[3]
y[8] Data byte 1
y[9] Data byte 2
y[10] Data byte 3
y[11] Data byte 4
y[12] Data byte 5
y[13] Data byte 6
y[14] Data byte 7
y[15] Data byte 8
Block CAN Port

Parameters

PGN

Select the filter criterion for the CAN port. From the list, select
Any, 1, or 2.

List

Enter the acceptance filter criterion for the parameter group

number (PGN). Enter a list of PGNs that you want to receive. You
can provide a set of PGNs as a row vector.

When the CAN FIFO blocks receives the data that corresponds
to these PGNs, they filter these messages and send them to the
J1939 Unpack block.

CA Address

Enter the filter acceptance criterion for the specified controller
application ID. Only messages whose destination addresses match

13-9

J1939 Receive

the current controller application address or the global address
will be routed to the appropriate PGN output.

13-10

J1939 Transmit

Purpose
Library

Description

J1939 Transmit
xPC Target Library for CAN/J1939

The J1939 Receive block sends the PGNs.
Block Inputs

The J1939 Transmit block inputs are typically connected directly to one
or more J1939 Pack blocks. The output of the J1939 Transmit block is
typically connected to the input of a CAN FIFO Send block. The J1939
Transmit block input is of type unsigned 8-bit integer. The bytes are:

Priority

Data Page and Reserved Bits
PDU Format

PDU Specific

Destination Address

Data Frame Size [0]

Data Frame Size [1]

New message Flag

Block Outputs

The J1939 Transmit block has a single output port of type double.

The output signal is a matrix of size n x 6, where n is the value in

the Number of input messages parameter. At this port, you must
provide information required to construct valid CAN messages to be
written into the transmit FIFO. For each CAN message, you must pass
six elements. See the documentation for the FIFO Write block (such as
Softing CAN-AC2-PCI with Philips SJA1000 FIFO Write) for a detailed
description of these elements.

Port
The value can be either 1 (port 1) or 2 (port 2) and defines the port
the CAN message is sent from.

13-11

J1939 Transmit

Block
Parameters

13-12

Identifier

Identifier of the CAN message to be sent. If it is a standard CAN
message, the valid range i1s 0 to 2047. If the CAN message is
extended, the range is 0 to 22°-1. J1939 identifiers are always
extended. J1939 messages can share the physical network with
another protocol using standard identifiers.

Identifier type

Data

Data

The value can be either 0 (standard identifier range) or 1
(extended identifier range) and defines the identifier type of the
outgoing CAN message. J1939 identifiers are always extended.

frame size

The value can be in the range of 0 to 8 and defines the data frame
size of the outgoing CAN message in bytes. The CAN messages
generated by J1939 are nearly always 8 bytes in length. The
exception is the request message, which has a length of 3 bytes.

This is the data for the data frame itself and is defined as a double
value (8 bytes). The CAN packing block is used to construct the
data as a double value.

Port (1 or 2)

Enter the port from which to send the message. Enter a value
of 1 (port 1) or 2 (port 2) to define the port the CAN message is
sent from.

Number of input messages

Specify the number of inputs to this block. One input for each
unique PGN and destination address is required.

Source Address

Specify the source address for the messages of the current node.

J1939 Unpack

Purpose
Library

Description

J1939 Unpack
xPC Target Library for CAN/J1939

The J1939 Unpack block disassembles a message suitable for sending
over the CAN network.

Block Inputs

Connect the J1939 Receive block directly to the output of a J1939
Unpack block. The input signal is a vector of unsigned bytes with a
length of 16. The bytes are defined as follows:

Bit Description

y[0] Reserved bit and data page bit

y[1] Protocol data unit format (PDU format or PF)

y[2] Group extension if PF is greater than 240, else
destination address (DA)

y[3] Source address

y[4] Timestamp[0]

y[5] Timestamp[1]

y[6] Timestamp[2]

y[7] Timestamp[3]

y[8] Data byte 1

y[9] Data byte 2

y[10] Data byte 1

y[11] Data byte 2

y[12] Data byte 3

y[13] Data byte 4

13-13

J1939 Unpack

Bit Description
y[14] Data byte 5
y[15] Data byte 6

Block Outputs

The PGN parameter determines the number of block outputs. The
number and definition for each parameter is dynamic. For each suspect
parameter number (SPN), the block creates an output of type double.

Block PGN

Parameters Set the message that this block unpacks. From the list, select a
PGN. The driver automatically creates input ports according to
the number and type of SPNs that correspond to the PGN.

Source
Enter the acceptance filter criterion for the source address.

Destination
Enter the filter acceptance criterion for the specified destination.
From the list, select:

global and specific
global only
specific only

13-14

Access

This chapter describes the I/0 board supported by the xPC Target product
(http://www.accesio.com).

Access I/O WDG-CSM Watchdog The WDG-CSM is a watchdog timer
Timer used to detect computer failure.

http://www.accesio.com

l 4 Access

Boards and Blocks

14-2

Access 1/0 WDG-CSM

Board

General
Description

Board
Characteristics

Access™ /O WDG-CSM

The WDG-CSM is a watchdog timer used to detect computer failure. You
can program this watchdog to reboot the system when a programmable
time-out occurs. The time-out interval can range from 20 microseconds

to 400 seconds.

The xPC Target block library supports this board with one driver block:

® Access I/O WDG-CSM Watchdog Timer

Board name
Manufacturer
Bus type
Access method

Multiple block instance
support

Multiple board support

WDG-CSM
Access 10
ISA

I/0 mapped
No

Yes

14-3

Access |/O WDG-CSM Waichdog Timer

Purpose WDG-CSM Watchdog Timer block
Librclry xPC Target Library for Access

Block Watchdog Time [s] (20us-4800s)
Parameters Enter a time-out value in seconds.

Show reset port

Select this check box to enable an input port on the driver block.
A signal connected to this port resets the watchdog.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

14-4

ADDI-DATA

This chapter describes I/0 boards supported by the xPC Target product
(http://www.addi-data.de).

ADDI-DATA APCI-1710 The APCI-1710 is a general-purpose
counting board with four function
modules.

ADDI-DATA PA-1700 The PA1700 is a counter board with

three 24-bit counters for connecting
three incremental encoders.

“Boards and Blocks — Alphabetical = Description of block parameters for
List” on page 15-2 ADDI-DATA driver blocks.

http://www.addi-data.de

15 ApbipaTA

Boards and Blocks — Alphabetical List

15-2

ADDI-DATA APCI-1710

Board

General
Description

Board
Characteristics

APCI-1710

The APCI-1710 is a general-purpose counting board with four function

modules.

The xPC Target block library supports this board with this driver block:

e ADDI-DATA APCI-1710 Incremental Encoder

Note, the xPC Target software only supports the 32-bit mode for this
board. As a result, each port only supports a single encoder.

Board name
Manufacturer
Bus type
Access method

Multiple block instance
support

Multiple board support

APCI-1710
ADDI-DATA
PCI

I/0 mapped
Yes

Yes

15-3

ADDI-DATA APCI-1710 Incremental Encoder

15-4

Purpose
Library

Note

Block
Parameters

APCI-1710 Incremental Encoder
xPC Target Library for ADDI-DATA

A function module is individually programmable with different
firmware. You do this by using the ADDI-DATA® utility SET1710.
This driver supports the APCI-1710 if the specified function module is
programmed with the incremental encoder firmware.

If the board and its specific module are not programmed with the
incremental encoder firmware, you must invoke SET1710 before the
driver can be used within an xPC Target application. In this case, plug
the board into a PC running Microsoft Windows and install the board as
indicated in the ADDI-DATA user manual. Use SET1710 to download
the incremental encoder firmware onto the appropriate function module.
After this step, you can remove the board and plug it into the target PC.

This driver block has two block outputs. The values output depend on
the value of the Type of Evaluation parameter. See below for further
information. Refer to the APCI-1710-manual for information on how to
connect the encoders to the board.

Function module
From the list select 1, 2, 3, or 4. This field specifies the function
module (counter) to be used for this block. It must be programmed
with the incremental encoder firmware. Two blocks for the same
board cannot have the same module (channel) specified.

Type of evaluation
From the list select the type of counter evaluation as either

e Virtual Absolute — Gets the counter value as an absolute
value after the reference point of the encoder has been reached
for the first time. The first output of the block outputs the
absolute angle of the connected encoder in radians. As long as
the reference point has not been reached for the first time, the
second block output is zero. If the reference point is reached for
the first time, and only for the first time, the corresponding

ADDI-DATA APCI-1710 Incremental Encoder

counter 1s reset to zero and the second output goes to 1. From
then on the output 1 outputs an absolute angle even if the
encoder is turned multiple times. The second output can be
used for controlling or switching different Simulink submodels.

® Reset and Index Output Up-Dating — Gets the counter
value in the range of 0..2*p1 or -pi..+p1 where the counter is
reset every time the reference point is reached. The first output
of the block outputs the angle of the connected encoder in
radian. As long as the reference point has not been reached
for the first time, the second block output is zero. Every time
the reference point is reached, the counter is reset to zero and,
depending on the direction of the encoder at this event, the
output value is either incremented or decremented by the value
1. In other words the second output outputs the actual number
of turns n because the reference point has been reached for the
first time. If the second output is multiplied by 2*pi and added
to the value of the first output, you get an absolute multiturn
angle, even if the counter is reset periodically.

Mode
From the list, choose single, double, or quadruple. This
parameter specifies the phase detection mode, that is, how many

phase changes of the specified module are detected (see the
APC1-1710 manual).

Hysteresis
From the list choose either off or on. The Hysteresis parameter
specifies whether a counter should skip a tick if the direction
changes (see the APC1-1700 manual).

Resolution
Specifies the resolution of the connected incremental encoder for
one revolution.

Sample time
Model base sample time or a multiple of the base sample time.

15-5

ADDI-DATA APCI-1710 Incremental Encoder

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

15-6

ADDI-DATA PA-1700

Board

Board
Characteristics

The PA1700 is a counter board with three 24-bit counters for connecting
three incremental encoders.

The xPC Target block library supports this board with this driver block:

e ADDI-DATA PA-1700 Incremental Encoder

Board name PA1700
Manufacturer ADDI-DATA
Bus type ISA

Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

15-7

ADDI-DATA PA-1700 Incremental Encoder

15-8

Purpose
Library

Note

Block
Parameters

PA-1700 Incremental Encoder block
xPC Target Library for ADDI-DATA

The driver block has two block outputs. The first outputs the absolute
angle in radians. The second output is zero as long as the index or the
reference point was not reached by rotating the encoder. If it is reached
for the first time, and only for the first time, the corresponding counter
is reset to zero and this output goes to 1. From then on the output 1
outputs an absolute angle even if the encoder is turned multiple times.
The second output can be used for controlling or switching different
Simulink submodels.

Counter
From the list select 1, 2, or 3. This parameter specifies the counter
used for this block. Two blocks for the same board (same base
address) cannot have the same counter (channel) specified.

Mode
From the list select single, double, or quadruple. This
parameter specifies the phase detection mode, that is, how many

phase changes of the specified counter are detected (see the
PA1700 manual).

Hysteresis
From the list choose either of f or on. The Hysteresis parameter
specifies whether a counter should skip a tick if the direction
changes (see the PA1700 manual).

Resolution
Specifies the resolution of the connected incremental encoder for
one revolution.

Sample time
Model base sample time or a multiple of the base sample time.

ADDI-DATA PA-1700 Incremental Encoder

Base Address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

The following jumpers must be set according to the parameters
entered above:

e Jumper J16, 17, and 18 must be set to position 1-2.
¢ Jumper J13, 14, and 15 must be set to position 1-2.

e Jumper J1, 5, and 9 must be set according to the connected
encoders.

¢ Jumper J2, 6, and 10 must be set according to the connected
encoders.

¢ Jumper J3, 7, and 11 must be set according to the connected
encoders.

¢ Jumper J4, 8, and 12 must be set according to the connected
encoders.

For information on how to connect the encoders to the board, see
the PA1700 manual.

If you want to use the 5 V power supply from the board (PIN20),
you must insert Fuse 1 on the board. Refer to the PA1700 manual.

15-9

ADDI-DATA PA-1700 Incremental Encoder

15-10

Adlink

This chapter describes the Adlink boards supported by the xPC Target
product (http://www.adlinktech.com).

Adlink PCI-8133

Adlink PCI-6208

“Boards and Blocks — Alphabetical
List” on page 16-2

Three-phase encoder counter and
PWM output board.

Digital-to-analog converter board
with four bits of digital input and
four bits of digital output lines.

Description of block parameters for
Adlink driver blocks.

http://www.adlinktech.com

16 Adiink

Boards and Blocks — Alphabetical List

16-2

Adlink PCI-8133
|

Board Adlink PCI-8133
General The Adlink PCI-8133 is a three-phase encoder counter and PWM
Descripticn output board. This board has three 16-bit quadruple AB phase encoder

counters, 12-bit PWM resolution, and eight general-purpose digital
input and output lines.

The xPC Target block library supports the three-phase PWM generation
section of the board with this driver block:

¢ Adlink PCI-8133 3-Phase PWM

Board .. Board name PCI-8133
Characteristics Manufacturer Adlink
Bus type PCI
Access method I/0 mapped
Multiple block instance No
support
Multiple board support No

16-3

Adlink PCI-8133 3-Phase PWM

Purpose

Library

Scaling
Output to
Input

Note

Block
Parameters

16-4

Adlink PCI-8133 3-Phase pulse width modulator block

xPC Target Library for Adlink

Hardware Output Block Input Data Scaling
Type
TTL Duty cycle: double Oto 1

¢ There is one input port for each phase (channel). You can select and

order each phase (channel) individually.

Hardware outputs are open collector lines that can draw a maximum
current of 20 mA.

To enable PWM generation, ensure that the OENA pin (pin 34 of
connector CN1) is connected to pin VCC (pin 19 of connector CN1).

Although the duty cycle inputs are of type double, the duty cycle
resolution is finite. The value of the Factor n determining square
wave period parameter defines the duty cycle resolution. For
example, if the value of Factor n determining square wave
period is 1000 for an output period of 200 microseconds, the duty
cycle can be adapted with a resolution of 1000 steps (from 0...1),

in relation to the value of Factor n determining square wave
period. The duty cycle resolution lowers by a smaller output period
(or higher output frequency).

Factor n determining square wave period

Defines the period (duration) of the square wave, where the
square wave is the sum of the on and off part. This parameter is
also called the n factor. The n factor must be in the range from 1
to 65535. The resulting period is calculated as

T=n*200 nanoseconds

Adlink PCI-8133 3-Phase PWM

Factor m determining dead time duration
Defines the duration of the dead time that is needed if the output
lines drive transistor bridges. This parameter is also called the
m factor. The m factor must be in the range from 1 to 255. The
resulting duration is calculated as

Tdt= 750 nanoseconds*(m+1)

Channel vector
Defines the channel (phase) that is active. Enter a vector of
numbers between 1 and 3 to This parameter also specifies the
input port of the block is connected to the channel. Channel value
1 represents phase U, value 2 represents phase V, and value 3
represents phase W. The maximum length of the vector is 3.

Reset vector
Enter a scalar or a vector that is the same length and channel
order as the Channel vector value. Enter 1 or 0. A value of
1 resets the output. A value of 0 retains the last value of the
duty cycle when the target application stops. You can specify a
different reset vector value for each channel.

Initial duty cycle vector
Enter a scalar or a vector that is the same length and channel
order as the Channel vector value. Enter 1 or 0. A value of
1 sets the reset duty cycle for the corresponding channel if the
Reset vector for that channel is also 1.

Sample time
Base sample time or a multiple of the base sample time.

PCI slot
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with

16-5

Adlink PCI-8133 3-Phase PWM

this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

16-6

Adlink PCI-6208
|

Board Adlink PCI-6208
General The Adlink PCI-6208A is a digital to analog converter board. This board
Descripticn has four bits of digital input and four bits of digital output lines.

The xPC Target block library supports this board with the following
driver blocks:

e Adlink PCI-6208A Analog Output
¢ Adlink PCI-6208A Digital Input
e Adlink PCI-6208A Digital Output

Board L. Board name PCI-6208A
Characteristics Manufacturer Adlink
Bus type PCI
Access method I/0 mapped
Multiple block instance support No
Multiple board support Yes

16-7

Adlink PCI-6208A Analog Output

Purpose

Library

Scaling
Output to
Input

Block
Parameters

16-8

Adlink PCI-6208A Analog Output block

xPC Target Library for Adlink

Block Input Data

Hardware Output Type Scaling

Double 1

Channel vector

Enter a vector of numbers to specify the output channels.

For example, to use the first and second analog output (D/A)
channels enter

(1, 2]

The channel numbers can occur in any order. Number the
channels beginning with 1 even though the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 4.

Range

From the list, choose

® 0 to 20 ma

® 5 to 25 ma

® 4 to 20 ma

Signal input to the block is in milliamps (ma). The output voltage
maximum 1is 10 volts. If the resistance is too large to get the

chosen current, the voltage measured across the output load will
saturate.

For example, assume an input sine wave with:

Adlink PCI-6208A Analog Output

Input = 10*sin(omega*t) + 10

If you set the range to 0 to 20 ma, the current should oscillate
from 0 to 20 ma at omega radians per second. The current will
only reach 20 ma if the load resistance is less than or equal to 500
ohms. If the load resistance is 1000 ochms, the maximum current
that 10 volts can drive is only 10 ma. The top half of the sine
wave will be clipped off.

Note the following:

¢ The scaling in this block is correct for the current output ports,
not the voltage ones.

¢ This block limits output to positive values only. This is in
response to the board hardware manual caution that states
driving a negative voltage from the D/A converter to the voltage
to current output board might cause damage to the current
output.

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running. For example, if Channel
vectoris [1 2] and the Reset vector is [1], the action taken will
be the same as if Reset vector was set to [1 1]. Both channels will
be reset to their initial values when model execution is stopped.

Initial value vector
The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set
to the initial values between the time the model is downloaded
and the time it is started. When model execution is stopped, the

16-9

Adlink PCI-6208A Analog Output

corresponding position in Reset vector is checked. Depending
on that value, the channel is either reset to the initial value or
remains at the last value attained while the model was running.
For example, assume that Channel vectoris [1 2], Reset
vector is [1 0], and Initial value vector is [2.3 5.6]. On
initial download, channel 1 is set to 2.3 ma and channel 2 to 5.6
ma. When the model is stopped, channel 1 resets to 2.3 ma and
channel 2 remains at the last value attained.

Sample time
Base sample time or a multiple of the base sample time.

PCI slot
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

16-10

Adlink PCI-6208A Digital Input

Purpose

Scaling
Input to
Output

Block
Parameters

Adlink PCI-6208A Digital Input

Block Output Data

Hardware Input Type Scaling
TTL Double TTLlow =0
TTL high = 1

Channel vector
Enter a vector of numbers to specify the digital input port ports.

For example, to use the first and second digital input channels
enter

[1, 2]

The channel numbers can occur in any order. Number the
channels beginning with 1 even though the board manufacturer
numbers them beginning with 0. The maximum allowable channel
number is 4. Each input can be listed at most once in this vector.

Sample time
Base sample time or a multiple of the base sample time.

PCI slot
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpci

16-11

Adlink PCI-6208A Digital Output

Purpose

Scaling
Input to
Output

Block
Parameters

16-12

Adlink PCI-6208A Digital Output

Block Input Data

Hardware Output Type Scaling

Double <0.5=TTL low
> 0.5 =TTL high

Channel vector

Enter a vector of numbers to specify the digital output channels.

For example, to use the first and second analog digital output
channels enter

[1, 2]

The channel numbers can occur in any order. Number the
channels beginning with 1 even if the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 8.

Reset vector

The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running. For example, if Channel
vectoris [1 2] and the Reset vector is [1], the action taken will
be the same as if Reset vector was set to [1 1]. Both channels will
be reset to their initial values when model execution is stopped.

Initial value vector

The initial value vector contains the initial voltage values for the
digital output channels. Enter a scalar or a vector that is the
same length as the channel vector. If you specify a scalar value,

Adlink PCI-6208A Digital Output

that value is the initial value for all channels. The channels are
set to the initial values between the time the model i1s downloaded
and the time it is started. When model execution is stopped, the
corresponding position in Reset vector is checked. Depending
on that value, the channel is either reset to the initial value or
remains at the last value attained while the model was running.
For example, assume that Channel vectoris [1 2], Reset
vector is [1 0], and Initial value vector is [0 1]. On initial
download, channel 1 is set to off and channel 2 to on. When the
model is stopped, channel 1 resets to off and channel 2 remains at
the last value attained.

If the Initial value vector value is greater than 0.5, the
corresponding digital output port is turned on, otherwise it is
turned off.

Sample time
Base sample time or a multiple of the base sample time.

PCI slot
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

16-13

Adlink PCI-6208A Digital Output

16-14

Advantech

This chapter describes I/0 boards supported by the xPC Target product
(http://www.advantech.com).

Advantech PCL-1800 16 single or 8 differential analog channels, 2
analog output D/A channels, 16 digital input
lines, and 16 digital output lines.

Advantech PCL-711B Eight single-ended analog input channels,
1 analog output channel, 16 digital input
lines, and 16 digital output lines.

Advantech PCL-726 Six independent analog output D/A channels,
16 digital input lines, and 16 digital output
lines.

Advantech PCL-727 12 independent analog output D/A channels,
16 digital input lines, and 16 digital output
lines.

Advantech PCL-728 Two independent analog output D/A
channels.

Advantech PCL-812 16 single-ended analog input channels, 2
analog output D/A channels, 16 digital input
lines, and 16 digital output lines.

Advantech PCL-812PG 16 single or 8 differential analog channels, 2
analog output D/A channels, 16 digital input
lines, and 16 digital output lines.

Advantech PCL-818 16 single or 8 differential analog channels, 2
analog output D/A channels, 16 digital input
lines, and 16 digital output lines.

http://www.advantech.com

17 Advantech

17-2

Advantech PCL-818H

Advantech PCL-818HD

Advantech PCL-818HG

Advantech PCL-818L

“Boards and Blocks —
Alphabetical List” on page
17-3

16 single or 8 differential analog channels, 1
analog output D/A channel, 16 digital input
lines, and 16 digital output lines.

16 single or 8 differential analog channels, 1
analog output D/A channel, 16 digital input
lines, and 16 digital output lines.

16 single or 8 differential analog input (A/D)
channels, 1 analog output (D/A) channel,

16 digital input lines, and 16 digital output
lines.

16 single or 8 differential analog input (A/D)
channels, 1 analog output (D/A) channel,

16 digital input lines, and 16 digital output
lines.

Description of block parameters for
Advantech® driver blocks.

Boards and Blocks — Alphabetical List

Boards and Blocks — Alphabetical List

17-3

Advantech PCL-1800

Board Advantech PCL-1800
General The PCL-1800 is an I/O board with 16 single or eight differential analog
Descripticn channels (12-bit) with a maximum sample rate of 330 kHz, two analog

output D/A channels (12-bit), and 16 digital input lines and 16 digital
output lines.

The xPC Target block library supports this board with these driver
blocks:

Advantech PCL-1800 Analog Input (A/D)
Advantech PCL-1800 Analog Output (D/A)
Advantech PCL-1800 Digital Input
Advantech PCL-1800 Digital Output

Board .. Board Name PCL-1800
Characteristics Manufacturer Advantech
Bus Type ISA
Access Method I/0 mapped
Multiple block instance support Yes
Multiple board support Yes

17-4

Advantech PCL-1800 Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

PCL-1800 Analog Input block

xPC Target Library for Advantech

Block Output Data
Hardware Input Type

Volts Double 1

Scaling

Channel vector
If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select
differential (Input coupling parameter set to differential),
enter numbers between 1 and 8. For example, to use the first and
second analog output (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts the numbering of the channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range Input Range Range
(V) Range Code | (V) Code
-10 to +10 -10 0 to +10 10

-5 to +5 -5 0to +5 5

-2.5 to +2.5 -2.5 0 to +2.5 2.5

17-5

Advantech PCL-1800 Analog Input (A/D)

Input Range Input Range Range
(V) Range Code | (V) Code
-1.25 to +1.25 -1.25 0 to +1.25 1.25
-0.625 to -0.625

+0.625

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings
on the board.

Input coupling
From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the
board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-6

Advantech PCL-1800 Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

PCL-1800 Analog Output block

xPC Target Library for Advantech

Hardware Output

Volts

Channel vector

Block Input Data Type

Double

Scaling
1

Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range
(v)

0 to +10

Range Code
10

Input Range
(v)

0 to +5

Range
Code

5

For example, if the first channel is 0 to +10 volts and the second
channel is 0 to +5 volts, enter

[10,5]

17-7

Advantech PCL-1800 Analog Output (D/A)

17-8

The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Advantech PCL-1800 Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-1800 Digital Input block

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-9

Advantech PCL-1800 Digital Output

Purpose PCL-1800 Digital Output

Librclry xPC Target Library for Advantech

IScaImg of Hardware Output Block Input Data Type Scaling

gpt“' :° TTL Double <0.5 = TTL low
utpu >0.5 = TTL high

Block Channel vector

Parameters Enter numbers between 1 and 16. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-10

Advantech PCL-711B

Board

General
Description

Board
Characteristics

Advantech PCL-711B

The PCL-711B is an I/O board with eight single-ended analog input
channels (12-bit) with a maximum sample rate of 25 kHz, one analog
output channel (12-bit), and 16 digital input lines and 16 digital output

lines.

The xPC Target block library supports this board with four driver

blocks:

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

PCL-711B
Advantech
ISA

I/0 mapped
Yes

Yes

17-11

Advantech PCL-711B Analog Input (A/D)

Purpose PCL-711B Analog Input block
Librclry xPC Target Library for Advantech
IScaImg of Hardware Input Block Output Data Type Scaling
nput to Volts Double 1
Output
Block Channel vector
Parameters Enter numbers between 1 and 8. For example, to use the first and

second analog output (A/D) channels, enter
[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-5 to +5 -5

-2.5 to +2.5 -2.5

-1.25 to +1.25 -1.25

-0.625 to +0.625 -0.625
-0.3125 to +0.3125 -0.3125

For example, if the first channel is -5 to +5 volts and the second
channel is -2.5 to +2.5 volts, enter

17-12

Advantech PCL-711B Analog Input (A/D)

[-5,-2.5]
Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-13

Advantech PCL-711B Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

17-14

PCL-711B Analog Output block

xPC Target Library for Advantech

Hardware Output Block Input Data Type Scaling
Volts Double 1

Range
From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the JP1 jumper setting
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

Advantech PCL-711B Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-711B Digital Input

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-15

Advantech PCL-711B Digital Output

Purpose PCL-711B Digital Output block
Librclry xPC Target Library for Advantech
Scaling of Hardware Block Input Data
Input to Output Type Scaling
Output TTL Double <0.5 = TTL low
>0.5 = TTL high
Block Channel vector
Parameters Enter numbers between 1 and 16. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-16

Advantech PCL-726

Board

General
Description

Board
Characteristics

Advantech PCL-726

The PCL-726 is an I/O board with, six independent analog output D/A
channels (12-bit), 16 digital input lines and 16 digital output lines.

The xPC Target block library supports this board with these driver

blocks:

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

PCL-726
Advantech
ISA

I/O mapped
Yes

Yes

17-17

Advantech PCL-726 Analog Output (D/A)

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-18

PCL-726 Analog Output block

xPC Target Library for Advantech

Block Input Data
Hardware Output Type Scaling

Volts Double 1

Channel vector
Enter numbers between 1 and 6. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
0 to +10 10
0 to +5 5

Advantech PCL-726 Analog Output (D/A)

For example, if the first channel is 0 to +10 volts and the second
channel is 0 to +5 volts, enter

[10,5]
The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-19

Advantech PCL-726 Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-20

PCL-726 Digital Input block

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

Advantech PCL-726 Digital Output

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-726 Digital Input block

xPC Target Library for Advantech

Hardware Block Input
Output Data Type Scaling
TTL Double <0.5 =TTL low

>0.5 = TTL high

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-21

Advantech PCL-727

Board

General
Description

Board
Characteristics

17-22

Advantech PCL-727

The PCL-727 is an I/O board with 12 independent analog output D/A
channels (12-bit), 16 digital input lines and 16 digital output lines.

The xPC Target block library supports this board with these driver

blocks:

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

PCL-727
Advantech
ISA

I/O mapped
Yes

Yes

Advantech PCL-727 Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

PCL-727 Analog Output block

xPC Target Library for Advantech

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 12. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-5 to +5 -5

0 to +5 5

0 to +10 10

17-23

Advantech PCL-727 Analog Output (D/A)

For example, if the first channel is 0 to +10 volts and the second
channel is 0 to +5 volts, enter

[10,5]
The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-24

Advantech PCL-727 Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-727 Digital Input block

xPC Target Library for Advantech

Hardware Block Output Data
Input Type Scaling
TTL Double TTL low = 0.0

TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-25

Advantech PCL-727 Digital Output

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-26

PCL-727 Digital Input block

xPC Target Library for Advantech

Hardware Block Input Data
Output Type Scaling
TTL Double <0.5 =TTL low

>0.5 = TTL high

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

Advantech PCL-728

Board

General
Description

Board
Characteristics

Advantech PCL-728

The PCL-728 is an I/O board with two independent analog output D/A
channels (12-bit).

The xPC Target block library supports this board with this driver block:

¢ Advantech PCL-728 Analog Output (D/A)

Board name PCL-728
Manufacturer Advantech
Bus Type ISA

Access method I/0 mapped
Multiple block instance support Yes
Multiple board support Yes

17-27

Advantech PCL-728 Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

17-28

PCL-728 Analog Output block

xPC Target Library for Advantech

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Channel numbers begin with 1 even if the board manufacturer
starts numbering channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

0 to +10 10

0to +5 5

Advantech PCL-728 Analog Output (D/A)

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings

on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-29

Advantech PCL-812

Board

General
Description

Board
Characteristics

17-30

Advantech PCL-812

The PCL-812 is an I/0 board with 16 single-ended analog input channels
(12-bit) with a maximum sample rate of 30 kHz, two analog output D/A
channels (12-bit), and 16 digital input lines and 16 digital output lines.

The xPC Target block library supports this board with these driver
blocks:

Advantech PCL-812 Analog Input (A/D)
Advantech PCL-812 Analog Output (D/A)
Advantech PCL-812 Digital Input
Advantech PCL-812 Digital Output

Board name PCL-812
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped
Multiple block instance support Yes
Multiple board support Yes

Advantech PCL-812 Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

PCL-812 Analog Input block

xPC Target Library for Advantech

Block Output Data
Hardware Input Type Scaling

Volts Double 1

Channel vector
Enter numbers between 1 and 16. For example, to use the first
and second analog input (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.0 to +2.0 -2.0

-1.0 to +1.0 -1.25

17-31

Advantech PCL-812 Analog Input (A/D)

For example, if the first channel is -10 to +10 volts and the second
channel is -5 to +5 volts, enter

[-10,-5]
The range settings must correspond to the DIP switch settings

on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-32

Advantech PCL-812 Analog Output (D/A)

Purpose

Scaling of
Input to
Output

Block
Parameters

PCL-812 Analog Output block

Hardware
Output Block Input Data Type Scaling
Volts Double 1

Channel vector

Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the

corresponding range codes.

Input Range (V)

Range code

0 to +5

5

For example, if both channels are 0 to +5 volts, enter

[5,3]

The range settings must correspond to the DIP switch settings

on the board.

17-33

Advantech PCL-812 Analog Output (D/A)

17-34

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

Advantech PCL-812 Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-812 Digital Input block

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-35

Advantech PCL-812 Digital Output

Purpose PCL-812 Digital Output block

Librclry xPC Target Library for Advantech

IScaImg of Hardware Output Block Input Data Type Scaling

gpt“' :° TTL Double <0.5 = TTL low
utpu >0.5 = TTL high

Block Channel vector

Parameters Enter numbers between 1 and 16. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-36

Advantech PCL-812PG

Board

General
Description

Board
Characteristics

Advantech PCL-812PG

The PCL-812PG is an I/O board with 16 single or eight differential
analog channels (12-bit) with a maximum sample rate of 30 kHz, two
analog output D/A channels (12-bit), and 16 digital input lines and 16
digital output lines.

The xPC Target block library supports this board with these driver
blocks:

¢ Advantech PCL-812PG Analog Input (A/D)

¢ Advantech PCL-812PG Analog Output (D/A)

¢ Advantech PCL-812PG Digital Input

¢ Advantech PCL-812PG Digital Output

Board name PCL-812PG
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped
Multiple block instance support Yes
Multiple board support Yes

17-37

Advantech PCL-812PG Analog Input (A/D)

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-38

PCI1-812PG Analog Input block

xPC Target Library for Advantech

Block Output Data
Hardware Input Type Scaling

Volts Double 1

Channel vector
Enter numbers between 1 and 16. For example, to use the first
and second analog input (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

-1.25 to +1.25 -1.25

-0.625 to +0.625 -0.625

0 to +10 10

Advantech PCL-812PG Analog Input (A/D)

Input Range (V) Range Code
0 to +5 5

0 to +2.5 2.5

0 to +1.25 1.25

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings

on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-39

Advantech PCL-812PG Analog Output (D/A)

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-40

PCL-812PG Analog Output block

xPC Target Library for Advantech

Block Input Data
Hardware Output Type Scaling

Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

0 to +10 10

0 to +5 5

Advantech PCL-812PG Analog Output (D/A)

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-41

Advantech PCL-812PG Digital Input

Purpose PCL-812PG Digital Input block
Librclry xPC Target Library for Advantech
Scaling of Block Output Data
Input to Hardware Input Type Scaling
Output TTL Double TTL low = 0.0
TTL high = 1.0
Block Channel vector
Parameters Enter numbers between 1 and 16. This driver allows the selection

of individual digital input lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital inputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-42

Advantech PCL-812PG Digital Output

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-812PG Digital Input block

xPC Target Library for Advantech

Block Input Data
Hardware Output Type Scaling

TTL Double <0.5 =TTL low
>0.5 = TTL high

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-43

Advantech PCL-818

Board Advantech PCL-818
General The PCL-818 is an I/0 board with 16 single or eight differential analog
Descripticn channels (12-bit) with a maximum sample rate of 100 kHz, two analog

output D/A channels (12-bit), and 16 digital input lines and 16 digital
output lines.

The xPC Target block library supports this board with these driver
blocks:

Advantech PCL-818 Analog Input (A/D)
Advantech PCL-818 Analog Output (D/A)
Advantech PCL-818 Digital Input
Advantech PCL-818 Digital Output

Board .. Board name PCL-818
Characteristics . . Advantech
Bus type ISA
Access method I/0 mapped

Multiple block instance support Yes
Multiple board support Yes

17-44

Advantech PCL-818 Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

PCL-818 Analog Input (A/D)

xPC Target Library for Advantech

Hardware Block Output Data
Input Type Scaling
Volts Double 1

Channel vector

If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select
differential (Input coupling parameter set to differential),
enter numbers between 1 and 8. For example, to use the first and
second analog output (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

-1.25 to +1.25 -1.25

17-45

Advantech PCL-818 Analog Input (A/D)

Input Range (V) Range Code
-0.625 to +0.625 -0.625

0 to 10 10

0 to +5 5

0 to +2.5 2.5

0 to +1.25 1.25

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]
The range settings must correspond to the DIP switch settings
on the board.

Input coupling
From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the
board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-46

Advantech PCL-818 Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

PCL-818 Analog Output block

xPC Target Library for Advantech

Hardware Output
Volts

Channel vector

Block Input Data Type Scaling

1

Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the

corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

0 to +10 10

0 to +5 5

17-47

Advantech PCL-818 Analog Output (D/A)

17-48

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

Advantech PCL-818 Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-818 Digital Input

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-49

Advantech PCL-818 Digital Output

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-50

PCL-818 Digital Output

xPC Target Library for Advantech

Block Input Data
Hardware Output Type Scaling

TTL Double <0.5 =TTL low
>0.5 = TTL high

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital output lines in any order. The number of
elements defines the number of digital lines used.

For example, to use the first eight digital outputs, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

Advantech PCL-818H

Board

General
Description

Board
Characteristics

Advantech PCL-818H

The PCL-818H is an I/O board with 16 single or eight differential
analog channels (12-bit) with a maximum sample rate of 100 kHz, one
analog output D/A channel (12-bit), and 16 digital input lines and 16

digital output lines.

The xPC Target block library supports this board with these driver

blocks:

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

PCL-818H
Advantech
ISA

I/0 mapped
Yes

Yes

17-51

Advantech PCL-818H Analog Input (A/D)

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-52

PCL-818H Analog Input block

xPC Target Library for Advantech

Block Output Data

Hardware Input | Type Scaling

Volts Double 1

Channel vector

If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select
differential (Input coupling parameter set to differential),
enter numbers between 1 and 8. For example, to use the first and
second analog output (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

-1.25 to +1.25 -1.25

Advantech PCL-818H Analog Input (A/D)

Input Range (V) Range Code
-0.625 to +0.625 -0.625

0 to 10 10

0 to +5 5

0 to +2.5 2.5

0 to +1.25 1.25

For example, if the first channel is -10 to +10 volts and the second

channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the DIP switch settings

on the board.

Input coupling

From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)

e differential channels (8 channels)

This choice must correspond to the MUX switch setting on the

board.

Sample time

Base sample time or a multiple of the base sample time.

Base address

Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

17-53

Advantech PCL-818H Analog Output (D/A)

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-54

PCL-818H Analog Output block

xPC Target Library for Advantech

Block Input Data

Hardware Output Type Scaling
Volts Double 1
Range

From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Advantech PCL-818H Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-818H Digital Input block

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-55

Advantech PCL-818H Digital Output

Purpose PCL-818H Digital Output block
Librclry xPC Target Library for Advantech
Scaling of Block Input Data
Input to Hardware Output Type Scaling
Output TTL Double <0.5 = TTL low
>0.5 = TTL high
Block Channel vector
Parameters Enter numbers between 1 and 16. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-56

Advantech PCL-818HD

Board

General
Description

Board
Characteristics

Advantech PCL-818HD

The PCL-818HD is an I/O board with 16 single or eight differential
analog channels (12-bit) with a maximum sample rate of 100 kHz, one
analog output D/A channels (12-bit), and 16 digital input lines and 16

digital output lines.

The xPC Target block library supports this board with these driver

blocks:

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

PCL-818HD
Advantech
ISA

I/0 mapped
Yes

Yes

17-57

Advantech PCL-818HD Analog Input (A/D)

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-58

PCL-818HD Analog Input block

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
Volts Double 1

Channel vector

If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select
differential (Input coupling parameter set to differential),
enter numbers between 1 and 8. For example, to use the first and
second analog output (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

-1.25 to +1.25 -1.25

Advantech PCL-818HD Analog Input (A/D)

Input Range (V) Range Code
-0.625 to +0.625 -0.625

0 to 10 10

0 to +5 5

0 to +2.5 2.5

0 to +1.25 1.25

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the DIP switch settings
on the board.

Input coupling
From the list, select one from the following list of input modes:
® Single-ended channels (16 channels)
e differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the
board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-59

Advantech PCL-818HD Analog Output (D/A)

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-60

PCL-818HD Analog Output block

xPC Target Library for Advantech

Hardware Block Input Data

Output Type Scaling

Volts Double 1
Range

From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Advantech PCL-818HD Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-818HD Digital Input block

xPC Target Library for Advantech

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-61

Advantech PCL-818HD Digital Output

Purpose PCL-818HD Digital Input block

Librclry xPC Target Library for Advantech

IScaImg of Hardware Output Block Input Data Type Scaling

gpt“' :° TTL Double <0.5=TTL low
utpu >0.5 = TTL high

Block Channel vector

Parameters Enter numbers between 1 and 16. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-62

Advantech PCL-818HG

Board

General
Description

Board
Characteristics

Advantech PCL-818HG

The PCL-818 is an I/0 board with 16 single or eight differential analog
input (A/D) channels (12-bit) with a maximum sample rate of 100 kHz,
one analog output (D/A) channel (12-bit), and 16 digital input lines
and 16 digital output lines.

The xPC Target block library supports this board with these driver
blocks:

¢ Advantech PCL-818HG Analog Input (A/D)

¢ Advantech PCL-818HD Analog Output (D/A)

¢ Advantech PCL-818HG Digital Input

¢ Advantech PCL-818HG Digital Output

Board name PCL-818HG
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped
Multiple block instance support Yes
Multiple board support Yes

17-63

Advantech PCL-818HG Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

17-64

PCL-818HG Analog Input block

xPC Target Library for Advantech

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector

If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select
differential (Input coupling parameter set to differential),
enter numbers between 1 and 8. For example, to use the first and
second analog output (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

-1.25 to +1.25 -1.25

-0.625 to +0.625 -0.625

Advantech PCL-818HG Analog Input (A/D)

Input Range (V) Range Code
0 to +10 10

0to +1 1

0 to +0.1 0.1

0 to +0.01 0.01

For example, if the first channel is -10 to +10 volts and the second
channel is -5 to +5 volts, enter

[-10,-5]

The range settings must correspond to the DIP switch settings
on the board.

Input coupling
From the list, select one from the following list of input modes:
® Single-ended channels (16 channels)
e differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the
board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-65

Advantech PCL-818HG Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

17-66

PCL-818HG Analog Output block

xPC Target Library for Advantech

Hardware Output Block Input Data Type Scaling
Volts Double 1

Range
From the list, choose either 0-10V or 0-5V.

The range settings must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

Advantech PCL-818HG Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-818HG Digital Input block

xPC Target Library for Advantech

Hardware
Input Block Output Data Type Scaling
TTL Double TTL low = 0.0

TTL high = 1.0

Channel vector
Enter numbers between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-67

Advantech PCL-818HG Digital Output

Purpose PCL-818HG Digital Output block

Librclry xPC Target Library for Advantech

Scaling of Block Input Data

Input to Hardware Output Type Scaling

Output TTL Double <0.5 = TTL low
>0.5 = TTL high

Block Channel vector

Parameters Enter numbers between 1 and 16. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter
(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address i1s 300 (hexadecimal), enter

0x300

17-68

Advantech PCL-818L

Board

General
Description

Board
Characteristics

Advantech PCL-818L

The PCL-818L is an I/0 board with 16 single or eight differential analog
input (A/D) channels (12-bit) with a maximum sample rate or 40 kHz,
one analog output (D/A) channels (12-bit), 16 digital input lines, and 16
digital output lines.

The xPC Target block library supports this board with these driver
blocks:

¢ Advantech PCL-818L Analog Input (A/D)

¢ Advantech PCL-818L Analog Output (D/A)

¢ Advantech PCL-818L Digital Input

¢ Advantech PCL-818L Digital Output

Board name PCL-818
Manufacturer Advantech
Bus type ISA

Access method I/0 mapped
Multiple block instance support Yes
Multiple board support Yes

17-69

Advantech PCL-818L Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

17-70

PCL-818L Analog Input block

xPC Target Library for Advantech

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector

If you select 16 channels (Input coupling parameter set to
Single-ended), enter numbers between 1 and 16. If you select
differential (Input coupling parameter set to differential),
enter numbers between 1 and 8. For example, to use the first and
second analog output (A/D) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Range vector

Enter a range code for each of the channels in the channel vector.
The range vector must be the same length as the channel vector.
This board allows the range of each channel to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-5 to +5 -5

-2.5 to +2.5 -2.5

-1.25 to +1.25 -1.25

-0.625 to +0.625 -0.625

Advantech PCL-818L Analog Input (A/D)

For example, if the first channel is -2.5 to +2.5 volts and the
second channel is -5 to +5 volts, enter

[-2.5,-5]

The range settings must correspond to the DIP switch settings
on the board.

If you need a -10 to +10 volt range, perform the following
workaround. Note that the PCL-818L Analog Input block sets
bits G1 and GO in the board register, but cannot set or read the
board jumper.

1 On the board, move the JP7 jumper to the 10 volt range (see
the manufacturer documentation for details).

2 In the Range vector parameter, enter [-5].

Setting the JP7 jumper to the 10 volt range doubles all input
voltage ranges.

3 Use a Gain block to multiply the value by 2. This ensures that
the output voltage matches the input voltage for all ranges.

Input coupling
From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

Your choice must correspond to the MUX switch setting on the
board.

Sample time
Base sample time or a multiple of the base sample time.

17-71

Advantech PCL-818L Analog Input (A/D)

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-72

Advantech PCL-818L Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

PCL-818L Analog Output block

xPC Target Library for Advantech

Hardware Output Block Input Data Type Scaling
Volts Double 1

Range
From the list, choose either 0-10V or 0-5V.

The range setting must correspond to the DIP switch settings
on the board.

Sample time
Base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-73

Advantech PCL-818L Digital Input

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

17-74

PCL-818L Digital Input block

xPC Target Library for Advantech

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter channels between 1 and 16. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital inputs, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

Advantech PCL-818L Digital Output

Purpose

Library

Scaling of
Input to
Output

Block
Parameters

PCL-818L Digital Output block

xPC Target Library for Advantech

Hardware Output Block Input Data Type Scaling

TTL Double <0.5=TTL
low
>0.5=TTL
high

Channel vector
Enter channels between 1 and 16. This driver allows the selection
of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use the first eight digital outputs, enter

[1 ’2’3!4!55657’8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

17-75

Advantech PCL-818L Digital Output

17-76

Analogic

This chapter describes the Analogic® I/O boards supported by the xPC Target
product (http://www.analogic.com).

Analogic AIM I/O board with 16 single or 8
differential analog input (A/D)
channels (12-bit)

Analogic AIM16 I/0 board with 16 single or 8
differential analog input (A/D)
channels (16-bit)

“Boards and Blocks — Alphabetical = Description of block parameters for
List” on page 18-2 Analogic driver blocks.

http://www.analogic.com

18 Analogic

Boards and Blocks — Alphabetical List

18-2

Analogic AIM

Board

General
Description

Board
Characteristics

Analogic AIM12

This board comes in three configurations from the factory. The
configurations are the AIM12-1/104, the AIM16-1/104, and the
AIM16-2/104. The AIM16-1/104 and the AIM16-2/104 differ only in the
time needed to acquire each sample. The AIM12-1/104 acquires 4 fewer
bits, but since the 12 bits are placed in the high 12 bits of the result
word, the internal scaling factors are identical to those used with the
AIM16. The output of the AIM12 changes in larger steps. Gain settings
for the AIM12 are also different than for the AIM16.

When acquiring samples from multiple channels, the board is driven
in its burst mode when the highest clock rate available for the board is
used. The AIM12-1/104 can acquire all 16 channels in 160 microseconds.

The AIM12 hardware can acquire from 1 to 16 (single ended) channels
at each sample time. These channels must be in a contiguous group,
but can start with any channel number and end with any channel
number that is greater than or equal to the start channel number. A
single channel is acquired by setting both first channel and last channel
to the same value.

The choice of unipolar or bipolar conversion range is made by placing
jumpers in accordance with the hardware manual. The driver is able
to read the hardware configuration and adjusts the integer to float
conversion as necessary.

The xPC Target block library supports this board with these driver
blocks:

e Analogic AIM12 Analog Input (A/D)

e Analogic AIM12 Digital Input

® Analogic AIM12 Digital Output

Board name AIM12
Manufacturer Analogic
Bus type PC/104

18-3

Analogic AIM

Access method I/0 mapped
Multiple block instance support No
Multiple board support Yes

18-4

Analogic AIM12 Analog Input (A/D)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

Analogic AIM12 Analog Input block

xPC Target Library for Analogic

Block Input Data
Hardware Input Type Scaling

Volts Double 1

First channel
In Single-ended (16 channels) input mode, enter a number
between 1 and 16 to indicate the first channel to be acquired.
In Differential (8 channels) input mode, enter a number
between 1 and 8.

Last channel
This is the last channel to acquire. The number must be
greater than or equal to the first channel. In Single-ended (16
channels) input mode, the number must be less than or equal to
16. In Differential (8 channels) input mode, the number
must be less than or equal to 8.

Input coupling
From the list, select one from the following list of input modes:

e Single-ended channels (16 channels)
® Differential channels (8 channels)

Check the hardware manual of the board for wiring
configurations.

Gain vector
Enter a vector of gain values with one entry for each channel in
the range first channel to last channel. Allowable gain settings for
the AIM12 are 1, 10, and 100. If you enter a scalar for gain, this
gain value is used for all channels.

18-5

Analogic AIM12 Analog Input (A/D)

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

18-6

Analogic AIM12 Digital Input

Purpose
Library
Scaling

Input to
Output

Block
Parameters

AIM12 Digital Input block

xPC Target Library for Analogic

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 8 to select the digital input lines
to be read. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the
number of digital lines used. For example, to use all of the digital
inputs enter

(1, 2, 3, 4, 5, 6, 7, 8]

Number the channels beginning with 1 even though the board
manufacturer numbers them beginning with 0.

Channel group
Choose Lower 8 bits to connect to channels 1 through 8 or Upper
8 bits to connect to channels 9 through 16.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

18-7

Analogic AIM12 Digital Output

Purpose AIM12 Digital Output

Librclry xPC Target Library for Analogic

ISCdllng Hardware Output Block Input Data Type Scaling

gptut :° TTL Double <0.5=TTL

urpu low

>0.5=TTL
high

Block Channel vector

Parameters Enter numbers between 1 and 8 to select the digital input lines

to be read. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the
number of digital lines used. For example, to use all of the digital
inputs enter

[1’ 2’ 3! 4! 5! 6’ 7’ 8]

Number the channels beginning with 1 even though the board
manufacturer numbers them beginning with 0.

Channel group
Choose Lower 8 bits to connect to channels 1 through 8 or Upper
8 bits to connect to channels 9 through 16.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

18-8

Analogic AIM16

Board

General
Description

Analogic AIM16

This board comes in three configurations from the factory. The
configurations are the AIM12-1/104, the AIM16-1/104 and the
AIM16-2/104. The AIM16-1/104 and the AIM16-2/104 differ only in the
time needed to acquire each sample. The AIM12-1/104 acquires 4 fewer
bits, but since the 12 bits are placed in the high 12 bits of the result
word, the internal scaling factors are identical to those used with the
AIM16. The output of the AIM12 changes in larger steps. Gain settings
for the AIM12 are also different than for the AIM16.

When acquiring samples from multiple channels, the board is driven
in its burst mode when the highest clock rate available for the
board is used. The AIM16-1/104 can acquire all 16 channels in 160
microseconds while the AIM16-2/104 completes the same acquisition
in 80 microseconds.

The AIM16 hardware can acquire from 1 to 16 (single ended) channels
at each sample time. These channels must be in a contiguous group,
but can start with any channel number and end with any channel
number that is greater than or equal to the start channel number. A
single channel is acquired by setting both first channel and last channel
to the same value.

The choice of unipolar or bipolar conversion range is made by placing
jumpers in accordance with the hardware manual. The driver is able
to read the hardware configuration and adjusts the integer to float
conversion as necessary.

The xPC Target block library supports this board with these driver
blocks:

e Analogic AIM16 Analog Input (A/D)

e Analogic AIM16 Digital Input

® Analogic AIM16 Digital Output

18-9

Analogic AIM16

Board L. Board name
Characteristics
Manufacturer
Bus type

Access method
Multiple block instance support
Multiple board support

18-10

AIM16
Analogic
PC/104

I/0 mapped
No

Yes

Analogic AIM16 Analog Input (A/D)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

AIM16 Analog Input block

xPC Target Library for Analog

Hardware Input Block Input Data Type Scaling
Volts Double 1

First channel
In Single-ended (16 channels) input mode, enter a number
between 1 and 16 to indicate the first channel to be acquired.
In Differential (8 channels) input mode, enter a number
between 1 and 8.

Last channel
This is the last channel to acquire. The number must be
greater than or equal to the first channel. In Single-ended (16
channels) input mode, the number must be less than or equal to
16. In Differential (8 channels) input mode, the number
must be less than or equal to 8.

Input coupling
From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)

e Differential channels (8 channels)

Check the hardware manual of the board for wiring configurations.

Gain vector
Enter a vector of gain values with one entry for each channel in
the range first channel to last channel. Allowable gain settings for
the AIM16 are 1, 2, 4, and 8. If you enter a scalar for gain, this
gain value is used for all channels.

Sample time
Enter a base sample time or a multiple of the base sample time.

18-11

Analogic AIM16 Analog Input (A/D)

Base address
Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

18-12

Analogic AIM16 Digital Input

Purpose
Library
Scaling

Input to
Output

Block
Parameters

AIM16 Digital Input block

xPC Target Library for Analog

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 8 to select the digital input lines
to be read. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the
number of digital lines used. For example, to use all of the digital
inputs enter

(1, 2, 3, 4, 5, 6, 7, 8]

Number the channels beginning with 1 even though the board
manufacturer numbers them beginning with 0.

Channel group
Choose Lower 8 bits to connect to channels 1 through 8 or Upper
8 bits to connect to channels 9 through 16.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

18-13

Analogic AIM16 Digital Output

Purpose AIM16 Digital Output
Librclry xPC Target Library for Analog
Scaling Block Input Data
Input to Hardware Output Type Scaling
Output TTL Double <0.5="TTL low
> 0.5 =TTL high
Block Channel vector
Parameters Enter numbers between 1 and 8 to select the digital input lines

to be read. This driver allows the selection of individual digital
input lines in any order. The number of elements defines the
number of digital lines used. For example, to use all of the digital
inputs enter

(1, 2, 3, 4, 5, 6, 7, 8]

Number the channels beginning with 1 even though the board
manufacturer numbers them beginning with 0.

Channel group
Choose Lower 8 bits to connect to channels 1 through 8 or Upper
8 bits to connect to channels 9 through 16.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board in hexadecimal (such as
0x300) as determined by the hardware jumpers on the board.

18-14

BittWare

“Running Models with BittWare
Blocks” on page 19-2

Bittware Audio-PMC+

“Boards and Blocks — Alphabetical
List” on page 19-6

Usage notes to help use the BittWare
blocks in your model.

Professional audio board with 8
channels of audio input and output.

Description of block parameters for
BittWare driver blocks

l 9 BittWare

Running Models with BittWare Blocks

In this section...

“Introduction” on page 19-2

“Model Notes” on page 19-2

“Frame Size, Sample Rate, and Sample Time Parameter Notes” on page 19-4

Introduction

This chapter describes the BittWare boards supported by the xPC Target
product (http://www.bittware.com). Note that you can no longer buy this
board from BittWare. The MathWorks supplies and supports the drivers and
documentation for the customers who already own this board.

Model Notes

This topic describes notes on working with models that use the BittWare
blocks.

* “Model Execution Timing” on page 19-2

e “Example Models” on page 19-3

* “Model Execution Limitations” on page 19-4

Model Execution Timing

To run the model, the xPC Target model is executed when each frame
completes on the board. Set the simulation parameters to use the interrupt
from the Audio-PMC+ rather than the timer interrupt when running the
model. First, you need to determine the interrupt vector number to which the
board is set. This is determined by the BIOS in the target machine during
boot.

1 From the MATLAB Command Window, type

getxpcpci

19-2

http://www.bittware.com

Running Models with BittWare Blocks

This command lists board information for all installed PCI devices that the
xPC Target software knows about.

2 Find the IRQ specified for this board. This is the interrupt source number
you need to specify in the xPC target code generation options field
in step of the following procedure.

Set the interrupt vector number:

1 From the MATLAB Command Window, type the name of your Simulink
model.

The Simulink model appears
2 From the Simulation menu, click Configuration Parameters.
The Configuration Parameter dialog box is displayed for the model.
3 Click the xPC Target options node.
4 Ensure that the Execution mode field is set to Real-Time.
5 Click the Real-time interrupt source list.

6 Select the interrupt number to which the board is set (from step in the
previous procedure).

7 Click the I/O board generating the interrupt list and select AudioPMC+
from the list.

8 Click OK and save the model.

Failure to set the interrupt vector as described, which results in your using
the xPC Target timer, will not stop the model from running. However, you
will occasionally see corrupt data since the Audio-PMC+ clock and the xPC
Target timer drift relative to each other and will sometimes overlap.

Example Models

Two example models are included with this version in the xpcdemos directory.

Correct operation of either of these requires that the interrupt source be set
correctly in the simulation parameters dialog.

19-3

l 9 BittWare

19-4

xpc8audiochannels.mdl shows the use of all 8 input and 8 output channels
at the same time. A block from Signal Processing Blockset is used to convert
from frame to sample based signals to drive the xPC Target scopes.

xpcaudiospectrum.mdl uses the xPC Target Spectrum Scope subsystem from
the xpcdspspectrum sample model with the Audio-PMC+ as the source. This
model only works correctly with Frame Size set to 1 because of the way that
the spectrum scope displays the results.

Model Execution Limitations

Model execution is entered each time a frame completes on the Audio-PMC+
board. The frame rate is the fastest clock available. You cannot obtain a
minor step execution that runs more frequently than frame completions. Any
attempt to do a multirate model must use the frame completion time as the
fastest rate. The audio input and audio output blocks must be executed at
the fastest rate in the model.

Input and output data from these blocks is in the form of a frame of data as
used by Signal Processing Blockset. If the frame size is 1, then the blocks
revert to sample based signals. The blocks in Signal Processing Blockset
expect to see signals that are frames.

Frame Size, Sample Rate, and Sample Time
Parameter Notes

Experimentally, with all 8 input and all 8 output channels in use, the
Audio-PMC+ can run with sample rates below the following frequencies as a
function of Frame Size:

Maximum Sample
Frame Size Rate

1 15 KHz
2 30 KHz
3 40 KHz
4
8

45 KHz
70 KHz

Running Models with BittWare Blocks

Frame Size

Maximum Sample
Rate

16 80 KHz
32 80 KHz
64 100 KHz
128 100 KHz
256 100 KHz

If fewer than all 8 inputs and outputs are in use, then the maximum sample
rate increases.

Frame 1 2 4 6 8

Size Channel | Channels | Channels | Channels | Channels
1 30 KHz 30 KHz 25 KHz 18 KHz 15 KHz

2 60 KHz 60 KHz 45 KHz 33 KHz 30 KHz

These above rates were obtained from testing at The MathWorks. As with
all hardware benchmarks, results might vary, depending on a number of
hardware conditions. For example, the following hardware elements, among
others, might effect your throughput:

® The PCI bus interface chip set on the motherboard

¢ Main memory speed

e General motherboard architecture

19-5

I 9 BittWare

Boards and Blocks — Alphabetical List

19-6

Bittware Audio-PMC+
|

Board BittWare Audio-PMC+

Librclry xPC Target Library for Bittware

General The Audio-PMC+ board is an audio board with 8 I/O channels.
Desc"phon The xPC Target block library supports this board with these driver

blocks:

¢ Bittware Audio-PMC+ Analog Input
¢ Bittware Audio-PMC+ Analog Output

Block parameters for the input and output blocks appear the same.

Board L. Board name Audio-PMC+
Characteristics Manufacturer BittWare

Bus type PCI

Access method Memory mapped

Multiple block instance support No

Multiple board support No
Features ¢ Input and output are in the form of the Signal Processing Blockset

frame signal type when the frame is larger than a single sample.

® The analog input block outputs a double or 32 bit integer frame
of data.

® The Audio-PMC+ board performs acquisition simultaneously for all
the selected channels in a model.

® The analog output block is dynamically typed. The integer or double
data type is taken from the connection instead of a block parameter.

19-7

Bittware Audio-PMC+

19-8

Hardware
Installation
Notes

The Audio-PMC+ daughter board might come from BittWare with
jumpers installed to boot from an onboard ROM. You must remove
these jumpers, as follows:

1 With the Audio-PMC+ off the carrier board, look for 6 pairs of pins
along one edge. For proper operation with the xPC Target software,
none of the pairs should be jumpered.

2 If there are any jumpers present, remove and then reinstall the
jumpers with only one pin connected. Leave the other side of the
jumper hanging. Leaving the jumpers like this will provide you with
the jumpers if you want to use the board in ROM bootable mode at
some future time.

Bittware Audio-PMC+ Analog Input
|

Purpose Audio-PMC+ Analog Input block

Librclry xPC Target Library for Bittware

Block Channel Vector

Parameters This is a vector of channels. Specifies the input channels that

the block works on. For example, to use the first, third, and fifth
analog input channels, enter

[1,3,5]

Output Format
Specify the format that the data takes. The choices are

¢ A normalized double in the range from -1.0to 1.0
® An unscaled integer

The unscaled integer format is usable with blocks that can
accept fixed point data. This format contains the data in the
lower 24 bits of a 32 bit integer with sign extension in the
upper 8 bits.

This parameter is only settable for the analog input block. The
analog output block determines the data type from the connection
and sets itself appropriately.

Frame Size, Sample Rate, and Sampletime
These three parameters are not independent but are related by:

FrameSize = Sampletime x Sample Rate

After you specify two of the parameters, the equation determines
the third parameter.

For example, if you set Frame Size to 32 and Sample Rate to
40000, specify Sampletime as -1. It is computed internally to
0.0008 seconds. This example model will execute every 0.0008

seconds, which is every 32 samples at 40 KHz.

19-9

Bittware Audio-PMC+ Analog Input

19-10

Conversely, you can also specify that you want to execute every
1.0 ms with a Frame Size of 64 samples. Specify Sample Rate
as -1. It is computed to be 64000 Hz.

The implementation of Sample Rate on the Audio-PMC+ might
cause the rate on your board to be inexact. Audio-PMC+ derives
the sample rate using the PWMO output from the first 21065L
SHARC DSP chip. The base clock that effects this output is the 60
MHz CPU clock for sample rates between 100 KHz and 20 KHz
and a prescaled 30 MHz CPU clock (half the 60 MHz CPU clock)
for sample rates between 8 KHz and 20 KHz.

The sample rate is implemented internally by specifying the total
number of counts per sample interval. For example, the number
of counts for a sample rate of 44.1 KHz is calculated as

680x10° 744, 1x10° = 1360.544217

This value i1s rounded down to 1360. To calculate the actual clock
sample rate, divide 60 MHz by the number of counts

60x10%/1360 = 44117.647

The result indicates that the sample rate is off by 0.04%. This
calculation assumes that the CPU clock is exactly 60 MHz.

Since you can build a model with just input or just output, the
three rate parameters are included in both block parameter
dialogs. You must set them to equal values if you have a model
that has both. If they are not equal, you will get an error when
you try to build the model.

The practical limit on Sample Rate is

8000 = Sample Rate = 100000

Bittware Audio-PMC+ Analog Input
|

Below 8 KHz, the output digital filter does not seem to work,
although the converter continues to work there.

Frame Size values can be between 1 and 256. If the specified or
computed frame size exceeds 256, the driver will return an error during
initialization.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpci

Note The use of multiple boards, at the same time and in the same
model, is unsupported.

See Also “Running Models with BittWare Blocks” on page 19-2

19-11

Bittware Audio-PMC+ Analog Output

Purpose Audio-PMC+ Analog Output block

Librclry xPC Target Library for Bittware

Block Channel Vector

Parameters This is a vector of channels. Specifies the output channels that

the block works on. For example, to use the first, third, and fifth
analog output channels, enter

[1,3,5]

Frame Size, Sample Rate, and Sampletime
These three parameters are not independent but are related by:

FrameSize = Sampletime x Sample Rate

After you specify two of the parameters, the equation determines
the third parameter.

For example, if you set Frame Size to 32 and Sample Rate to
40000, specify Sampletime as -1. It is computed internally to
0.0008 seconds. This example model will execute every 0.0008

seconds, which is every 32 samples at 40 KHz.

Conversely, you can also specify that you want to execute every
1.0 ms with a Frame Size of 64 samples. Specify Sample Rate
as -1. It is computed to be 64000 Hz.

The implementation of Sample Rate on the Audio-PMC+ might
cause the rate on your board to be inexact. Audio-PMC+ derives
the sample rate using the PWMO output from the first 21065L
SHARC DSP chip. The base clock that effects this output is the 60
MHz CPU clock for sample rates between 100 KHz and 20 KHz
and a prescaled 30 MHz CPU clock (half the 60 MHz CPU clock)
for sample rates between 8 KHz and 20 KHz.

19-12

Bittware Audio-PMC+ Analog Output

The sample rate is implemented internally by specifying the total
number of counts per sample interval. For example, the number
of counts for a sample rate of 44.1 KHz is calculated as

680x10° 744, 1x10° = 1360.544217

This value is rounded down to 1360. To calculate the actual clock
sample rate, divide 60 MHz by the number of counts

60x10%/1360 = 44117.847

The result indicates that the sample rate is off by 0.04%. This
calculation assumes that the CPU clock is exactly 60 MHz.

Since you can build a model with just input or just output, the
three rate parameters are included in both block parameter
dialogs. You must set them to equal values if you have a model
that has both. If they are not equal, you will get an error when
you try to build the model.

The practical limit on Sample Rate is

8000 < SampleRate < 100000

Below 8 KHz, the output digital filter does not seem to work,
although the converter continues to work there.

Frame Size values can be between 1 and 256. If the specified or
computed frame size exceeds 256, the driver will return an error
during initialization.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

19-13

Bittware Audio-PMC+ Analog Output

See Also

19-14

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

Note The use of multiple boards, at the same time and in the same
model, is unsupported.

“Running Models with BittWare Blocks” on page 19-2

BVM

This chapter describes the BVM I/0 board supported by the xPC Target
product (http://www.bvmltd.co.uk).

BVM PMCDIO64 A 64-bit digital I/O board with two ports. Each
port can be configured to be either 32 independent
1-bit channels or a single 32-bit wide integer
channel.

http://www.bvmltd.co.uk

20 svm

Boards and Blocks

20-2

BVM PMCDIO64

Board

General
Description

Board
Characteristics

BVM PMCDIO64

The PMCDIOG64 is a 64-bit digital I/O board. The hardware provides
64 bits, which the driver splits into two ports of 32 bits each. Each
port can be configured to be either input or output. In addition, each
port can be configured to be either 32 independent 1-bit channels or a
single 32-bit wide integer channel.

The xPC Target block library supports this board with these driver
blocks:

e BVM PMCDIO64 Digital Input

e BVM PMCDIO64 Digital Output

Board name PMCDIO64
Manufacturer BVM

Bus type PCI

Access method Memory mapped
Multiple block instance support Yes

Multiple board support Yes

20-3

BVM PMCDIO64 Digital Input

20-4

Purpose
Library
Scaling

Input to
Output

Block
Parameters

PMCDIO64 Digital Input block

xPC Target Library for BVM

Hardware Input Block Output Data Type Scaling

TTL double TTL low = 0.0
TTL high = 1.0
Format
From the list, select either 32 One bit channels or Single 32
bit port.

If the format is 32 One bit channels, then the channel vector
specifies the configuration of the block. Each output is a double
with value of 0 or 1. The value is 0 when the hardware input
voltage is low.

If the format is Single 32 bit port, then the output from the
block is a 32-bit integer where all 32 bits on the hardware feed
into the single output. The channel vector is not used in this mode
and is unavailable on the Block Parameters dialog box. The least
significant bit is the lowest numbered bit in the hardware manual.

Channel vector
This is a vector of channels. This parameter is only used when the
format is 32 One bit channels. Channels are numbered from 1
to 32 even though the hardware manual labels them 0 to 31.

Port
Each half of the 64 bits is a separate port. Port 1 is the lower 32
bits and Port 2 is the upper 32 bits. You can use one port for input
and the other port for output.

Sample time
Enter the base sample time or a multiple of the base sample time.

BVM PMCDIO64 Digital Input

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpci

20-5

BVM PMCDIO64 Digital Output

20-6

Purpose

Library

Scaling
Input to
Output

Block
Parameters

PMCDIO64 Digital Output block

xPC Target Library for BVM

Hardware
Output Block Input Data Type Scaling
TTL double < 0.5 =TTL low
> 0.5 = TTL high
Format

From the list, choose either 32 One bit channels or Single 32
bit port.

If the format is 32 One bit channels, then the channel vector
specifies the configuration of the block. Each input is a double.
The hardware output is set to low voltage if the input is < 0.5 and
high voltage if the input is > 0.5.

If the format is Single 32 bit port, then the input to the block
is a 32-bit integer where all 32 bits on the hardware are controlled
by the single input. The channel vector is not used in this mode
and is unavailable on the Block Parameters dialog box. The least
significant bit is the lowest numbered bit in the hardware manual.

Channel vector

This is a vector of channels and is only used when the format

is 32 One bit channels. Channels are numbered from 1 to 32
even though the hardware manual labels them 0 to 31. Hardware
I/0 signal numbers 1032 to 1063 are acquired by choosing Port

2 and channels 1 to 32.

Reset action vector

If you chose 32 One bit channels, enter a vector of 1’s and
0’s that is the same length as the channel vector. A value of 1
indicates that the channel is reset to the value in the initial value

BVM PMCDIO64 Digital Output

vector when the model is stopped. A value of 0 indicates that
the output remains at the last value written when the model is
stopped. If you enter a scalar value, that value is used for all
channels.

If you chose Single 32 bit port, enter a 1 or a O to determine
what happens when the model is stopped. If you enter 1, all 32
bits of the output are reset to the value given by the initial value
vector. If you enter 0, the output remains at the last value written
when the model is stopped.

Initial value vector
If you chose 32 One bit channels, this vector determines both
the initial value of the outputs at xPC boot time and the values
when model execution is stopped. A value of 1 for a given channel
sets the output for that channel to 1 while any other value sets
the output to 0.

If you chose Single 32 bit port, enter the scaler value to write
to the output port. The value can be a hexadecimal or a decimal. If
it 1s a hexadecimal, then use C syntax. For example, Oxaaaaaaaa
in hexadecimal would be the equivalent of 2863311530 in decimal.

Port
Each half of the 64 bits is a separate port. Port 1 is the lower
32 bits and Port 2 is the upper 32 bits. You can use one port for
input and the other port for output. In a given model, each port
can only be set to one direction.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

20-7

BVM PMCDIO64 Digital Output

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

20-8

Commtech

The xPC Target software uses the Commtech Fastcom:422/2-PCI
(http://www.comtech-fastcom.com) board drivers as part of its solution
for serial communications. These blocks are not described in this chapter.
Instead, see Chapter 2, “Serial Communications Support” for details.

http://www.commtech-fastcom.com

2 1 Commtech

21-2

Condor Engineering

The xPC Target product uses Condor Engineering
(http://www.condoreng.com) board drivers as part of its solution for the
ARINC 429 and MIL-STD-1553 buses. These blocks are not described in this
chapter. Instead, see Chapter 10, “ARINC 429 Support” and Chapter 11,
“MIL-STD-1553 Support” for details.

http://www.condoreng.com

22 Condor Engineering

22-2

Contec

This chapter describes the Contec I/0 boards supported by the xPC Target
product (http://www.contec.com).

Contec AD12-16(PCI)

Contec AD12-16(PCI)E

Contec AD12-16U(PCI)E

Contec AD12-64(PCI)

Contec AD16-16(PCDHE

I/0 board with 16 single-ended or 8
differential analog input (A/D) channels
(12 bit), 4 digital input lines, and 4 digital
output lines.

I/0 board with 16 single-ended or 8
differential analog input (A/D) channels (12
bit), one analog output channel (12 bit), 4
digital input lines, 4 digital output lines,
and an 18254-compatible counter.

I/0 board with 16 single-ended or 8
differential analog input (A/D) channels (12
bit), one analog output channel (12 bit), 4
digital input lines, 4 digital output lines,
and an 18254-compatible counter.

I/0 board with 64 single-ended or 32
differential analog input (A/D) channels
(12 bit), 4 digital input lines, and 4 digital
output lines.

I/0 board with 16 single-ended or 8
differential analog input (A/D) channels (16
bit), one analog output channel (16 bit), 4
digital input lines, 4 digital output lines,
and an 18254-compatible counter.

http://www.contec.com

23 Contec

23-2

Contec ADI12-16(PCI)

Contec CNT24-4D(PCI)

Contec CNT32-8M(PCI)

Contec DA12-16(PCI)

Contec DA12-4(PCI)

Contec PI-641(PCT)H

Contec P10-32/32F(PCI)

Contec P10-32/32L(PCDHH

Contec P10-32/32T(PCI)

Contec PO-64L(PCI)H

“Boards and Blocks —
Alphabetical List” on page
23-3

I/0 board with 16 single-ended or 8
differential analog input (A/D) channels
(12 bit), 4 digital input lines, and 4 digital
output lines.

24-bit differential up/down counter board
with four channels.

32-bit high-speed up/down counter board
with eight channels.

I/0 board with 16 analog output (D/A)
channels (12 bit).

I/0 board with 4 analog output (D/A)
channels (12 bit).

Digital input board with 64 digital input
channels.

Optoisolated high-speed I/O board with
32 digital input channels and 32 output
channels.

I/0 board with 32 digital input channels
and 32 output channels.

1/0 board with 32 digital input lines and 32
digital output lines.

Digital output board with 64 digital output
channels.

Description of block parameters for Contec
driver blocks.

Boards and Blocks — Alphabetical List

Boards and Blocks — Alphabetical List

23-3

Contec AD12-16(PCl)

Board Contec AD12-16(PCI)
General The Contec AD12-16(PCI) is an I/O board with 16 single-ended or 8
Descripticn differential analog input (A/D) channels (12 bit), 4 digital input lines,

and 4 digital output lines.

The xPC Target block library supports this board with these driver
blocks:

¢ Contec AD12-16(PCI) Analog Input (A/D)

¢ Contec AD12-16(PCI) Digital Input

¢ Contec AD12-16(PCI) Digital Output

The xPC Target software does not support the Counter/Timer
functionality of the board.

Board .. Board name AD12-16(PCI)
Characteristics Manufacturer Contec
Bus type PCI
Access method I/0 mapped
Multiple block instance support No
Multiple board support Yes

23-4

Contec AD12-16(PCl) Analog Input (A/D)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

AD12-16(PCI) Analog Input (A/D) block

xPC Target Library for Contec

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter a vector of numbers to specify the input channels. For
example to use the first three analog input (A/D) channels, enter

[1, 2, 3]

The channel numbers can occur in any order. Number the them
beginning with 1 even if the board manufacturer numbers them
beginning with 0.

The maximum allowable channel number for this board is 8
(differential-ended) or 16 (single-ended). If the highest channel
number you specify is n, the hardware converts all the channels
between 1 and n, whether or not they occur in your channel vector.
It is most efficient to specify a contiguous range of channels.
(Permuting the order of such a range has no impact on efficiency
however.)

23-5

Contec AD12-16(PCl) Analog Input (A/D)

23-6

Range vector

This board allows the range of each channel to be selected
independently. Enter a scalar, in which case the same range
will be used for all channels, or a vector the same length as the

channel vector.

The range vector entries must be range codes selected from the

following table:

Input Range Input Range

(V) Range Code | (V) Range Code
-10 to +10 -10 0 to 10 10

-5 to +5 -5 Otob

-2.5 to 2.5 -2 0to 2.5

-1.25 to 1.25 -1 0to 1.25

Polarity

Choose single-ended or double-ended (differential-ended). This
setting applies to all channels.

Sample time

Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)

If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpci

Contec AD12-16(PCl) Analog Input (A/D)

The Device ID of this board is 8153.

23-7

Contec AD12-16(PCI) Digital Input

23-8

Purpose

Library

Scaling
Input to
Output

Block
Parameters

AD12-16(PCI) Digital Input block

xPC Target Library for Contec

Hardware
Input Block Output Data Type Scaling
TTL Double TTL low = 0.0

TTL high = 1.0

Channel vector
Enter a vector of numbers to specify the input channels. For
example to use the first and third digital input channels enter

[1, 3]

The channel numbers can occur in any order. Number the
channels beginning with 1 even if the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 4.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

Contec AD12-16(PCI) Digital Input

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

The Device ID of this board is 8153.

23-9

Contec AD12-16(PCI) Digital Output

Purpose AD12-16(PCI) Digital Output block
Librclry xPC Target Library for Contec
Scaling Hardware
Input to Output Block Input Data Type Scaling
Output TTL Double <0.5 = TTL low
> 0.5 TTL high
Block Channel vector
Parameters Enter a vector of numbers to specify the output channels. For

example, to use the first and third digital output channels enter

[1, 3]

The channel numbers can occur in any order. Number the
channels beginning with 1 even if the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 4.

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector
The initial value vector contains the initial values (0 or 1) of the
output channels. Enter a scalar or a vector that is the same length
as the channel vector. If you enter a scalar, that value is used for
all channels. The channels are set to these initial values between
the time the model is downloaded and the time it is started.

23-10

Contec AD12-16(PCI) Digital Output

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpci

The Device ID of this board is 8153.

23-11

Contec AD12-16(PCI)E

Board

General
Description

Board
Characteristics

23-12

Contec AD12-16(PCDHE

The Contec AD12-16(PCI)E is an I/O board with 16 single-ended or 8
differential analog input (A/D) channels (12 bit), one analog output
channel (12 bit), 4 digital input lines, 4 digital output lines, and an
18254-compatible counter.

The xPC Target block library supports this board with these driver
blocks:

¢ Contec AD12-16(PCI)E Analog Input (A/D)

¢ Contec AD12-16(PCI)E Analog Output (D/A)

The xPC Target software does not support the digital I/O or
Counter/Timer functionality of the board.

Board name AD12-16(PCI)E
Manufacturer Contec

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

Contec AD12-16(PCI)E Analog Input (A/D)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

AD12-16(PCI)E Analog Input block

xPC Target Library for Contec

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

[1, 2, 3]

The channel numbers can occur in any order. Number them
beginning with 1 even if the board manufacturer numbers them
beginning with 0. The maximum allowable channel number for
this board is 8 (differential-ended) or 16 (single-ended).

Gain vector
To specify the gain, enter 1, 2, 4, or 8 for each of the channels
in the channel vector. The gain vector must be the same length
as the channel vector. If you enter a scalar, the value is applied
to all channels.

The gain is applied to the signal prior to sampling the voltage.
After the signal voltage is sampled, the result is divided by the
gain to obtain the block output signal value. To avoid clipping,
make sure that the amplified gain falls within the range you
selected.

Range
From the list, select Bipolar -10V to +10V or Unipolar 0V to
+10V. This range applies to all channels.

Sample time
Enter the base sample time or a multiple of the base sample time.

23-13

Contec AD12-16(PCI)E Analog Input (A/D)

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

Note that the Device ID of this board is 8113.

23-14

Contec AD12-16(PCI)E Analog Output (D/A)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

AD12-16(PCI)E Analog Output block

xPC Target Library for Contec

Hardware Output Block Input Data Type Scaling
Volts Double 1
Range

From the list, select -5V to +5V, -10V to +10V,or 0 to +10V
as the output range for the analog output. This range must

correspond to the output range determined by the jumpers on
the board.

Reset
This check box controls the behavior of the output channel at
model termination. If the check box is selected, the output
channel is reset to the value specified as the initial value. If the
check box is not selected, the output channel remains at the most
recent value attained while the model was running.

Initial value
Enter the initial voltage value for the output channel. The
output channel is set to this value between the time the model is
downloaded and the time the model is started. Also, if the reset
check box is selected, the output channel is reset to the initial
value when the model is stopped.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

23-15

Contec AD12-16(PCI)E Analog Output (D/A)

23-16

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

Note that the Device ID of this board is 8113.

Contec AD12-16U(PCI)E

Board

General
Description

Board
Characteristics

Contec AD12-16U(PCI)E

The Contec AD12-16U(PCIE is an I/O board with 16 single-ended or
8 differential analog input (A/D) channels (12 bit), one analog output
channel (12 bit), 4 digital input lines, 4 digital output lines, and an
18254-compatible counter.

The xPC Target block library supports this board with these driver
blocks:

¢ Contec AD12-16U(PCI)E Analog Input (A/D)

¢ Contec AD12-16U(PCI)E Analog Output (D/A)

The xPC Target software does not support the digital I/O or
Counter/Timer functionality of the board.

Board name AD12-16U(PCIE
Manufacturer Contec

Bus type PCI

Access method I/0 mapped

Multiple block instance support No
Multiple board support Yes

23-17

Contec AD12-16U(PCI)E Analog Input (A/D)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

23-18

AD12-16U(PCI)E Analog Input block

xPC Target Library for Contec

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

[1, 2, 3]

The channel numbers can occur in any order. Number them
beginning with 1 even if the board manufacturer numbers them
beginning with 0. The maximum allowable channel number for
this board is 8 (differential-ended) or 16 (single-ended).

Range
From the list, select Bipolar -2.5V to +2.5V, Bipolar -5V to
+5V, Unipolar OV to +5V, or Unipolar OV to +10V. This range
applies to all channels.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

Contec AD12-16U(PCI)E Analog Input (A/D)

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

Note that the Device ID of this board is 8103.

23-19

Contec AD12-16U(PCI)E Analog Output (D/A)

Purpose

Library

Scaling
Input to
Output

Block
Parameters

23-20

AD12-16U(PCI)E Analog Output block

xPC Target Library for Contec

Hardware

Output Block Input Data Type Scaling

Volts Double 1
Range

From the list, select -5V to +5V, -10V to +10V,or 0 to +10V
as the output range for the analog output. This range must

correspond to the output range determined by the jumpers on
the board.

Reset
This check box controls the behavior of the output channel at
model termination. If the check box is selected, the output
channel is reset to the value specified as the initial value. If the
check box is not selected, the output channel remains at the most
recent value attained while the model was running.

Initial value
Enter the initial voltage value for the output channel. The
output channel is set to this value between the time the model is
downloaded and the time the model is started. Also, if the reset
check box is selected, the output channel is reset to the initial
value when the model is stopped.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

Contec AD12-16U(PCI)E Analog Output (D/A)

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

Note that the Device ID of this board is 8103.

23-21

Contec AD12-64(PCI)

Purpose Contec AD12-64(PCI) block
General The Contec AD12-64(PCI) is an I/O board with 64 single-ended or 32
Descripticn differential analog input (A/D) channels (12 bit), 4 digital input lines,

and 4 digital output lines.

The xPC Target block library supports this board with these driver
blocks:

¢ Contec AD12-64(PCI) Analog Input (A/D)

¢ Contec AD12-64(PCI) Digital Input

¢ Contec AD12-64(PCI) Digital Output

The xPC Target software does not support the Counter/Timer
functionality of this board.

Board .. Board name AD12-64(PCI)
Characteristics Manufacturer Contec
Bus type PCI
Access method I/0 mapped
Multiple block instance support No
Multiple board support Yes

23-22

Contec AD12-64(PCl) Analog Input (A/D)

Purpose AD12-64(PCI) Analog Input block

Librclry xPC Target Library for Contec

Scaling Block Output Data

Input to Hardware Input Type Scaling
OUtPUt Volts Double 1

Block Channel vector

Parameters Enter a vector of numbers to specify the input channels. For

example, to use the first three analog input (A/D) channels, enter

[1, 2, 3]

The channel numbers can occur in any order. Number the them
beginning with 1 even if the board manufacturer numbers them
beginning with 0.

The maximum allowable channel number for this board is 32
(differential-ended) or 64 (single-ended). If the highest channel
number you specify is n, the hardware will convert all the
channels between 1 and n, whether or not they occur in your
channel vector. It is most efficient to specify a contiguous range
of channels. (Permuting the order of such a range has no impact
on efficiency however.)

23-23

Contec AD12-64(PCl) Analog Input (A/D)

23-24

Range vector
This board allows the range of each channel to be selected
independently. If you enter a scalar, the same range is used for
all channels. If you enter a vector, it must be the same length as
the channel vector.

The range vector entries must be range codes selected from the
following table:

Input Range Range Input Range
(V) Code (V) Range Code
-10 to +10 -10 0to 10 10
-5 to +5 -5 0tob
-2.5 to 2.5 -2 0to 2.5
-1.25 to 1.25 -1 0to 1.25
Polarity

Choose single-ended or double-ended (differential-ended). This
setting applies to all channels.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

Contec AD12-64(PCl) Analog Input (A/D)

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

The Device ID of this board is 8143.

23-25

Contec AD12-64(PCI) Digital Input

Purpose

Library

Scaling
Input to
Output

Block
Parameters

23-26

AD12-64(PCI) Digital Input block

xPC Target Library for Contec

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter a vector of numbers to specify the input channels. For
example, to use the first and third digital input channels enter

(1, 3]

The channel numbers can occur in any order. Number the
channels beginning with 1 even if the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 4.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

The Device ID of this board is 8143.

Contec AD12-64(PCI) Digital Output

Purpose

Library

Scaling
Input to
Output

Block
Parameters

AD12-64(PCI) Digital Output block

xPC Target Library for Contec

Hardware
Output Block Input Data Type Scaling

Double < 0.5 =TTL low
> 0.5 TTL high

Channel vector

Enter a vector of numbers to specify the output channels. For
example, to use the first and third digital output channels enter

[1, 3]

The channel numbers can occur in any order. Number the
channels beginning with 1 even if the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 4.

Reset vector

The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector

The initial value vector contains the initial voltage values (0 or

1) for the output channels. Enter a scalar or a vector that is the
same length as the channel vector. If you specify a scalar value,
that value is the initial value for all channels. The channels are
set to the initial values between the time the model is downloaded
and the time it is started.

23-27

Contec AD12-64(PCI) Digital Output

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpeci

The Device ID of this board is 8143.

23-28

Contec AD16-16(PCI)E

Board

General
Description

Board
Characteristics

Contec AD16-16(PCDHE

The Contec AD16-16(PCI)E is an I/O board with 16 single-ended or 8
differential analog input (A/D) channels (16 bit), one analog output
channel (16 bit), 4 digital input lines, 4 digital output lines, and an
18254-compatible counter.

The xPC Target block library supports this board with these driver
blocks:

¢ Contec AD16-16(PCI)E Analog Input (A/D)

¢ Contec AD16-16(PCI)E Analog Output (D/A)

The xPC Target software does not support the digital I/O or
Counter/Timer functionality of the board.

Board name AD16-16(PCDHE
Manufacturer Contec

Bus type PCI

Access method I/0 mapped
Multiple block instance support No

Multiple board support Yes

23-29

Contec AD16-16(PCI)E Analog Input (A/D)

Purpose

Library

Scaling
Input to
Output

Block
Parameters

23-30

AD16-16(PCI)E Analog Input block

xPC Target Library for Contec

Block Output Data
Hardware Input Type Scaling

Volts Double 1

Channel vector
Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

[1, 2, 3]

The channel numbers can occur in any order. Number them
beginning with 1 even if the board manufacturer numbers them
beginning with 0. The maximum allowable channel number for
this board is 8 (differential-ended) or 16 (single-ended).

Range
From the list, select Bipolar -10V to +10V, Bipolar -5V to
+5V, Unipolar OV to +5V, or Unipolar OV to +10V. This range
applies to all channels.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

Contec AD16-16(PCI)E Analog Input (A/D)

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

Note that the Device ID of this board is 8123.

23-31

Contec AD16-16(PCI)E Analog Output (D/A)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

23-32

AD16-16(PCI)E Analog Output block

xPC Target Library for Contec

Hardware Output Block Input Data Type Scaling
Volts Double 1

Range
From the list, select -5V to +5V, -10V to +10V,or 0 to +10V
as the output range for the analog output. This range must
correspond to the output range determined by the jumpers on
the board.

Reset
This check box controls the behavior of the output channel at
model termination. If the check box is selected, the output
channel is reset to the value specified as the initial value. If the
check box is not selected, the output channel remains at the most
recent value attained while the model was running.

Initial value
Enter the initial voltage value for the output channel. The
output channel is set to this value between the time the model is
downloaded and the time the model is started. Also, if the reset
check box is selected, the output channel is reset to the initial
value when the model is stopped.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

Contec AD16-16(PCI)E Analog Output (D/A)

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

Note that the Device ID of this board is 8123.

23-33

Contec ADI12-16(PCl)

Board

General
Description

Board
Characteristics

23-34

Contec ADI12-16(PCI)

The Contec ADI12-16(PCI) is an I/O board with 16 single-ended or 8
differential analog input (A/D) channels (12 bit), 4 digital input lines,
and 4 digital output lines.

The xPC Target block library supports this board with these driver
block:

¢ Contec ADI12-16(PCI) Analog Input (A/D)

Board name ADI12-16(PCI)
Manufacturer Contec

Bus type PCI

Access method I/0 mapped
Multiple block instance support No

Multiple board support Yes

Contec ADI12-16(PCl) Analog Input (A/D)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

ADI12-16(PCI) Analog Input block

xPC Target Library for Contec

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter a vector of numbers to specify the input channels. For
example, to use the first three analog input (A/D) channels, enter

[1, 2, 3]

The channel numbers can occur in any order. Number them
beginning with 1 even if the board manufacturer numbers them
beginning with 0. The maximum allowable channel number for
this board is 8 (differential-ended) or 16 (single-ended).

Gain vector
To specify the gain, enter 1, 2, 4, or 8 for each of the channels
in the channel vector. The gain vector must be the same length
as the channel vector. If you enter a scalar, the value is applied
to all channels.

The gain is applied to the signal prior to sampling the voltage.
After the signal voltage is sampled, the result is divided by the
gain to obtain the block output signal value. To avoid clipping,
make sure that the amplified gain falls within the range you
selected.

Range
From the list, select Bipolar -10V to +10V, Unipolar 0V
to +10V, or Unipolar 4mA to 20mA. Choose a range that is
consistent with the jumper settings on the board. This range
applies to all channels.

23-35

Contec ADI12-16(PCl) Analog Input (A/D)

23-36

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpeci

Note that the Device ID of this board is 8133.

Contec CNT24-4D(PCI)

Board

General
Description

Board
Characteristics

Contec CNT24-4D(PCI)

The Contec CNT24-4D(PCI) is a 24-bit differential up/down counter
board with four channels. This board typically connects to incremental
encoders. Incremental encoders convert physical motion into electrical
pulses than can be used to determine velocity, direction, and distance.

The xPC Target block library supports this board with one driver block:

¢ Contec CNT24-4D(PCI) Incremental Encoder

The xPC Target software does not support the timer or interrupt

functionality of this board.

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

CNT24-4D(PCI)
Contec

PCI

I/0 mapped

No

Yes

23-37

Contec CNT24-4D(PCI) Incremental Encoder

Purpose
Library

Block
Parameters

23-38

CNT24-4D(PCI) Incremental Encoder block
xPC Target Library for Contec
Note that you can have only one driver block instance for each physical

board. If you need to use multiple channels, select and enable more
than channel on the same block.

Channel

From the list, select 1, 2, 3, or 4. This parameter specifies the
channel to which the subsequent parameters refer. The other
parameters in this block apply to this channel. The Enable
channel check box number changes to match the selected
channel.

Enable channel

Select this check box to enable the currently selected channel.
Click OK after you select this check box to add an output port
for the channel on the driver instance of your model. This check
box also enables you to set a number of operation parameters for
the block, ranging from Input type to Initial count. Whatever
operation parameters are in place when you click OK are
preserved for the channel until the next time you change them.

The following are some additional behavior notes for this check
box:

¢ If you do not select this check box for a channel, an output port
for that channel is not added to the block. You also cannot
change the operation parameters for the channel.

¢ If you select this check box and save the operation parameters
for that channel, then later deselect this check box, the block
preserves the operation parameters for the channel. The output
port is removed from the block.

Input type

From the list, choose either Line receiver or TTL-level input.
This parameter specifies the input type for the current channel.

Contec CNT24-4D(PCIl) Incremental Encoder

Mode
From the list, select the counter operation mode for the current
channel. There are a number of modes, based on 1-phase or
2-phase pulse inputs. See the Contec CNT24-4D(PCI) user’s guide
documentation for descriptions of these modes.

Note that of this list of modes, the Multiply by 4 modes are
synonyms for quadrature encoding.

Direction
From the list, select either Clockwise rotation counts down
or Clockwise rotation counts up as the counter direction of
the current channel.

Phase Z logic
From the list, select either Active high or Active low for the
current channel. This parameter specifies the state of the phase Z
input (reference position signal). If the phase Z mode parameter
has a value of Disable phase Z input, Phase Z logic has no
effect.

Phase Z mode
From the list, select either Disable phase Z input, Enable
next phase Z input only once, or Enable every phase Z
input. This parameter specifies the operation mode of the phase
Z input for the current channel.

Digital filter
From the list, select the characteristics of the digital input filter
you want to apply to the current channel’s input signal. There are
a number of sampling cycles to choose from, ranging from 0. 1
microseconds (1 MHz) to 1056.1 microseconds (94 Hz).

Initial count
Enter a number from 0 to 16777215 (FFFFFF hex, the largest
24-bit number). This parameter specifies the initial value of the
counter for the current channel.

Sample time
Enter the base sample time or a multiple of the base sample time.

23-39

Contec CNT24-4D(PCI) Incremental Encoder

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

The Device ID of this board is 8163.

23-40

Contec CNT32-8M(PCI)

Board

General
Description

Board
Characteristics

Contec CNT32-8M(PCI)

The Contec CNT32-8M(PCI) is a 32-bit high-speed up/down counter
board with eight channels. This board typically connects to incremental
encoders. Incremental encoders convert physical motion into electrical
pulses than can be used to determine velocity, direction, and distance.
The xPC Target block library supports this board with this driver block:

e Contec CNT32-8M(PCI) Incremental Encoder

Board name
Manufacturer

Bus type

Multiple block instance
support

Multiple board support

CNT32-8M(PCI)
Contec
PCI

Per model — Yes

Per channel — No. To support multiple
channels, use multiple blocks with each
block configured to a different channel.

Yes

23-41

Contec CNT32-8M(PCI) Incremental Encoder

Purpose CNT32-8M(PCI) Incremental Encoder block
Librclry xPC Target Library for Contec
Note Each channel of this block has an external input and output signal. You

can configure these channels for hardware events (such as starting
the encoder on the rising or falling edge of an input signal). You can
also configure them for general purpose, where the signals behave like
digital I/O signals. The block can have the following ports:

® Qutput port labeled with the channel number

¢ Qutput port labeled din , if you configure the block for digital input

¢ Input port labeled dout , if you configure the block for digital output
Scaling Encoder (Input to Output)

Hardware Input Block Input Data Type Scaling
TTL or differential Double Counts
(pulse input)

Digital Input (Input to Output)

Hardware Input Block Input Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Digital Output (Output to Input)

Block Output Data
Hardware Output Type Scaling
TTL Double TTL low =< 0.5

TTL high => 0.5

23-42

Contec CNT32-8M(PCI) Incremental Encoder
|

Block The Main tab contains parameters that define the proper operation
Parameters: of the board.
Main Tab

Channel

From the list, select 1 through 8. This parameter specifies

the board channel to which the subsequent parameters refer.
Number the channels beginning with 1 even though the board
manufacturer numbers them beginning with 0. The other
parameters in this block apply to this channel. The channel you
select becomes the label for the output port of the block.

Operation mode
From the list, select one of the following operation modes:

® 2-phase Input Synchronous Clear Multiply by 1

® 2-phase Input Synchronous Clear Multiply by 2

® 2-phase Input Synchronous Clear Multiply by 4

® 2-phase Input Asynchronous Clear Multiply by 1

® 2-phase Input Asynchronous Clear Multiply by 2

® 2-phase Input Asynchronous Clear Multiply by 4

® Single-phase Input Asynchronous Clear Multiply by 1

® Single-phase Input with Gate Control Attached
Asynchronous Clear Multiply 1

® Single-phase Input with Gate Control Attached
Asynchronous Clear Multiply 2

See the Contec CNT32-8M(PCI) 8-Ch 32-Bit Up/Down
High-Speed Counter Board for PCI documentation for
definitions of these modes.

Digital filter
From the list, select the desired digital filter time, in microseconds.
For no digital filter time, select No filtering.

23-43

Contec CNT32-8M(PCI) Incremental Encoder

Pulse input
From the list, select one of the following pulse inputs:

® Differential line receiver input
® TTL Level input

You can connect the CNT32-8M(PCI) board to either differential
or TTL input signals. See the Contec CNT32-8M(PCI) 8-Ch
32-Bit Up/Down High-Speed Counter Board for PCI
documentation for connection details.

Direction
From the list, select one of the following count directions:

® Up in the clockwise direction/Down in the
counterclockwise direction

® Down in the clockwise direction/Up in the
counterclockwise direction

The board can count either up or down in the clockwise
direction.

Initial value
Enter a number from 0 to the largest 32-bit number. This
parameter specifies the initial value of the counter before the
model begins.

Load initial value
Select this check box to load the value from Initial value into
the counter, overwriting the previous count value. If you do not
select this check box, the driver does not load the initial value,
preserving the previous count value.

Sample Time
Enter the base sample time or a multiple of the base sample time.

PCI slot
If only one board of this type is in the target PC, enter

-1

23-44

Contec CNT32-8M(PCI) Incremental Encoder

Block
Parameters:
Counter

Control
Tab

to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

The Counter Control tab contains parameters that define

®* How to start and stop counting
¢ How to use the external input signal
¢ Under what circumstances to reset the counter

Start method

Directs counter to begin counting under one of the following
conditions:

® Model Start — Begin counting when model starts.

e External Input Rising — Begin counting when external
TTL input rises.

e External Input Falling — Begin counting when external
TTL input falls.

® Disable — Do not begin counting.

Stop method

Directs counter to stop counting under one of the following
conditions:

® Model Terminate — Stop counting when model stops.

e External Input Rising — Stop counting when external TTL
input rises.

e External Input Falling — Stop counting when external
TTL input falls.

23-45

Contec CNT32-8M(PCI) Incremental Encoder

® Free Running — Do not stop counting.

Zero-clear external input rising
Select this check box to clear the counter upon a rising edge on
the external input signal.

Zero-clear external input falling
Select this check box to clear the counter upon a falling edge on
the external input signal.

Zero-clear match 0
Select this check box to clear the counter when the counter has the
same value as that contained in the Match 0 value parameter.

Zero-clear match 1
Select this check box to clear the counter when the counter has the
same value as that contained in the Match 1 value parameter.

Preset external input rising
Select this check box to preset the counter to the value contained
in the Preset value parameter upon a rising edge on the external
input signal.

Preset external input falling
Select this check box to preset the counter to the value contained
in the Preset value parameter upon a falling edge on the
external input signal.

Preset match 0
Select this check box to preset the counter to the value contained
in the Preset value parameter when the counter value has the
same value as that contained in the Match 0 value parameter.

Preset match 1
Select this check box to preset the counter to the value contained
in the Preset value parameter when the counter value has the
same value as that contained in the Match 1 value parameter.

Preset value
Enter the value that you want the counter to reset when a preset
condition occurs.

23-46

Contec CNT32-8M(PCI) Incremental Encoder

Block
Parameters:
Signals

Tab

Match 0 value
Enter the value that you want the counter value to be compared
to for the Zero-clear match 0 or Preset match 0 conditions.

Match 1 value
Enter the value that you want the counter value to be compared
to for the Zero-clear match 1 or Preset match 1 conditions.

The Signals tab contains parameters that

¢ Control the optional use of the external output signal
¢ Control the encoder index signal

¢ Enable the external signals for general purpose

Output signal match 0
Select this check box to strobe the output signal when the counter
value has the same value as the Match 0 parameter.

Output signal match 1
Select this check box to strobe the output signal when the counter
value has the same value as the Match 1 parameter.

Output signal abnormal input error
Select this check box to strobe the output signal when the phase-A
and phase-B signals change at the same time.

Output signal digital filter error
Select this check box to strobe the output signal when a pulse is
faster than the digital filter time setting.

Output signal disconnection alarm error
Select this check box to strobe the output signal when both the
positive and negative differential inputs are high.

One-shot duration
From the list, select the pulse width of the output signal for the
one-shot duration, in microseconds or milliseconds.

23-47

Contec CNT32-8M(PCI) Incremental Encoder

23-48

Index enable

From the list, select the following to enable or disable the
phase-Z/CLR input signal:

e Disable — Disables phase-Z input (select this option if
phase-Z does not exist).

® Enable Once — Enables only the next phase-Z input.
® Enable All — Enables all phase-Z inputs.

Index logic

From the list, select one of the following to set the logic of the
phase-Z input signal. Setting Index enable to Enable Once or
Enable All activates this parameter.

® Positive (Active High)

® Negative (Active Low)

Enable digital input

Select this check box to enable the external input signal to be
used as a general purpose digital input. Even if you select an
external input signal other than general-purpose input, the block
can still read the input level.

Enable digital output

Select this check box to enable the external output signal to

be used as a general-purpose digital output. If you select an
external output signal other than general purpose, the block
cannot write the output level. Selecting this check box enables the
Digital output initial value and Digital output final value
parameters.

Digital output initial value

From the list, select how you want to set the initial value of the
digital output when the model starts:

¢ None — Do not modify the output value.
® Set — Set the bit.
e Clear — Clear the bit.

Contec CNT32-8M(PCI) Incremental Encoder

Digital output final value

From the list, select how you want to set the final value of the
digital output when the model terminates:

¢ None — Do not modify the output value.
® Set — Set the bit.

e (Clear — Clear the bit.

23-49

Contec DA12-16(PCl)

Purpose

General
Description

Board
Characteristics

23-50

Contec DA12-16(PCI) block

The Contec DA12-16(PCI) is an I/O board with 16 analog output (D/A)
channels (12 bit).

The xPC Target block library supports this board with this driver block:
¢ Contec DA12-16(PCI) Analog Output (D/A)

The xPC Target software does not support the timer, external trigger,
or interrupt functionality of this board.

Board name DA12-16(PCI)
Manufacturer Contec

Bus type PCI

Access method I/0 mapped
Multiple block instance support No

Multiple board support Yes

Contec DA12-16(PCl) Analog Output (D/A)

Purpose DA12-16(PCI) Analog Output block

Librclry xPC Target Library for Contec

ISCdllng Hardware Output Block Input Data Type Scaling

nput to Volts Double 1

Output

Block Channel vector

Parameters Enter a vector of numbers to specify the output channels. For
example, to use the first and second analog output (D/A) channels
enter

[1, 2]

The channel numbers can occur in any order. Number the
channels beginning with 1 even if the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 16.

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector
The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started.

23-51

Contec DA12-16(PCl) Analog Output (D/A)

23-52

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpeci

The Device ID of this board is 8163.

Contec DA12-4(PCl)

Board

General
Description

Board
Characteristics

Contec DA12-4(PCI)

The Contec DA12-4(PCI) is an I/0 board with 4 analog output (D/A)

channels (12 bit).

The xPC Target block library supports this board with this driver block:

¢ Contec DA12-4(PCI) Analog Output (D/A)

The xPC Target software does not support the timer, external trigger,
or interrupt functionality of this board.

Board name
Manufacturer
Bus type
Access method

Multiple block instance
support

Multiple board support

DA12-4(PCI)
Contec

PCI

I/0 mapped
No

Yes

23-53

Contec DA12-4(PCl) Analog Output (D/A)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

23-54

DA12-4(PCI) Analog Output block

xPC Target Library for Contec

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector

Enter a vector of numbers to specify the output channels. For
example, to use the first and second analog output (D/A) channels
enter

[1, 2]

The channel numbers can occur in any order. Number the
channels beginning with 1 even if the board manufacturer
numbers them beginning with 0. The maximum allowable
channel number is 4.

Reset vector

The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector

The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started.

Contec DA12-4(PCl) Analog Output (D/A)

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpci

The Device ID of this board is 8183.

23-55

Contec PI-64L(PCI)H

Board

General
Description

Board
Characteristics

23-56

Contec PI-64L(PCI)H

The Contec PI-64L(PCI)H is a digital input board with 64 digital input
channels. The supporting block can control up to 32 bits that you can
configure as either a single 32-bit port (Single 32-bit Port mode) or
up to 32 1-bit channels (32 1-bit Channels mode).

The xPC Target block library supports this board with this driver block:

¢ Contec PI-64L(PCI)H Digital Input

Board name PI-64L(PCDHH
Manufacturer Contec

Bus type PCI

Multiple block instance support No

Multiple board support Yes

Contec PI-64L(PCI)H Digital Input

Purpose

Library

Scaling
Input to
Output

Block

Parameters

PI-64L(PCI)H Digital Input block

xPC Target Library for Contec

Hardware Block Output Data
Input Type

TTL Double (Format:32
1-bit Channels)

uint32 (Format:Single
32-bit Port)

Format
From the list, select either

Scaling
Double:

TTL low = 0.0
TTL high = 1.0
uint32:

TTL low corresponding bit
is clear

TTL high corresponding bit
is set

® 32 1-bit Channels — Indicates that the channel vector
specifies the configuration of the block. Each output is a double
with value of 0 or 1. The value is 0 when the hardware input

voltage is low.

e Single 32-bit Port — Indicates that the output from the
block is a 32-bit integer where all 32 bits on the board feed
into the single output. The least significant bit is the lowest
numbered bit in the Contec documentation.

If you choose this mode, use the bit packing and unpacking
blocks (Digital I/0 Bit-Packing and Digital I/O Bit-Unpacking)
to construct appropriate data frames.

23-57

Contec PI-64L(PCI)H Digital Input

23-58

Group

From the list, select either

® A (Bits 0-31) — Selects the 32-bit word from group A to
address.

® B (Bits 32-63) — Selects the 32-bit word from group B to
address.

Channel vector

(82 1-bit Channels mode only) Enter a vector of numbers to
specify the output channels. For example, to use the first and
third digital input channels, enter

(1, 3]

This vector indexes into group A or B channels. For group A,
channel vector [1, 3] specifies channels 0 and 2. For group B,
channel vector [1, 3] specifies channels 32 and 34.

The channel numbers can occur in any order, but the numbers
must be in the range 1 to 32.

Digital Filter

This parameter specifies the digital filter time. From the list,
select

® No filtering
® 0.25 usec
® 0.5 usec
® 1 usec
2 usec
® 4 usec
8 usec

See the Contec documentation for further details on the digital
filter time.

Contec PI-64L(PCI)H Digital Input

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpci

23-59

Contec PIO-32/32F(PClI)

Board

General
Description

Board
Characteristics

23-60

Contec PI0O-32/32F(PCI)

The Contec PI0O-32/32F(PCI) is an optoisolated high-speed I/0 board
with 32 digital input channels and 32 output channels.

The xPC Target block library supports this board with these driver
blocks:

® Contec PIO-32/32T(PCI) Digital Input
e Contec PIO-32/32T(PCI) Digital Output

The xPC Target software does not support the timer, external trigger,
or interrupt functionality of this board.

Board name PI10-32/32F(PCI)
Manufacturer Contec

Bus type PCI

Multiple block instance support No

Multiple board support Yes

Contec P10-32/32F(PCl) Digital Input

Purpose
Library
Scaling

Input to
Output

Block
Parameters

PI0O-32/32F(PCI) Digital Input block

xPC Target Library for Contec

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high =1.0

1I/0 format
Select serial or parallel. If you select serial, the block is
configured to accept up to 32 one-bit input channels. If you select
parallel, the block is configured to accept a single 32-bit input
channel and the channel vector parameter is unavailable.

Channel vector
If you selected serial I/O format, enter a vector of numbers to
specify the input channels for serial I/O format. For example, to
use the first and third digital input channels, enter

[1, 3]

The channel numbers can occur in any order, but the numbers
must be in the range 1 to 32.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

23-61

Contec P10-32/32F(PCl) Digital Input

23-62

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

The device ID of this board is 8152.

Contec P10-32/32F(PCl) Digital Output

Purpose
Library
Scaling

Input to
Output

Block
Parameters

PIO-32/32F(PCI) Digital Output block

xPC Target Library for Contec

Hardware Output Block Input Data Type Scaling

TTL Double <0.5=TTL low
> 0.5 = TTL high

1I/0 format
Select serial or parallel. If you select serial, the block is
configured to accept up to 32 one-bit input channels for output.
If you select parallel, the block is configured to accept a single
32-bit channel and the channel vector parameter is unavailable.

Channel vector
For serial I/O format, enter a vector of numbers to specify the
output channels. For example, to use the first and third digital
output channels, enter

[1, 3]

The channel numbers can occur in any order, but the numbers
must be in the range 1 to 32.

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

23-63

Contec P10-32/32F(PCl) Digital Output

23-64

Initial value vector

The initial value vector contains the initial voltage values (0 or

1) for the output channels. Enter a scalar or a vector that is the
same length as the channel vector. If you specify a scalar value,
that value is the initial value for all channels. The channels are
set to the initial values between the time the model is downloaded
and the time it is started. If you selected parallel I/O format,
the values can be in the form [hex2dec(ffffffff)].

Sample time

Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)

If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpei

The device ID of this board is 8152.

Contec PIO-32/32L(PCI)H

Board

General
Description

Board
Characteristics

Contec PIO-32/32L(PCI)H

The Contec PI0O-32/32L(PCI)H is an I/0 board with 32 digital input
channels and 32 output channels. Each supporting block can control up
to 32 bits that you can configure as either a single 32-bit port (Single
32-bit Port mode) or up to 32 1-bit channels (32 1-bit Channels
mode).

The xPC Target block library supports this board with these driver
blocks:

¢ Contec P10-32/32L(PCI)H Digital Input

¢ Contec PIO-32/32L(PCI)H Digital Output

The xPC Target software does not support the timer, external trigger,
or interrupt functionality of this board.

Board name PIO-32/32L(PCI)H
Manufacturer Contec

Bus type PCI

Multiple block instance support Yes

Multiple board support Yes

23-65

Contec P10-32/32L(PCI)H Digital Input

Purpose

Library

Scaling
Input to
Output

Block

Parameters

23-66

PI0O-32/32L(PCIH Digital Input block

xPC Target Library for Contec

Hardware
Input

TTL

Format

Block Output Data
Type

Double (Format:32
1-bit Channels)

uint32 (Format:Single
32-bit Port)

From the list, select either

Scaling
Double:

TTL low = 0.0
TTL high = 1.0
uint32:

TTL low corresponding
bit is clear

TTL high corresponding
bit is set

® 32 1-bit Channels — Indicates that the channel vector
specifies the configuration of the block. Each output is a double
with value of 0 or 1. The value is 0 when the hardware input
voltage is low.

e Single 32-bit Port — Indicates that the output from the
block is a 32-bit integer where all 32 bits on the board feed
into the single output. The least significant bit is the lowest
numbered bit in the Contec user manual.

If you choose this mode, use the bit packing and unpacking
blocks (Digital I/0 Bit-Packing and Digital I/O Bit-Unpacking)
to construct appropriate data frames.

Contec P10-32/32L(PCI)H Digital Input

Channel vector
(82 1-bit Channels mode only) Enter a vector of numbers to
specify the output channels. For example, to use the first and
third digital output channels, enter

[1, 3]
The channel numbers can occur in any order, but the numbers

must be in the range 1 to 32.

Digital Filter
This parameter specifies the digital filter time. From the list,
select

® No filtering

® 0.25 usec

® 0.5 usec

® 1 usec

® 2 usec

® 4 usec
8

b usec

See the Contec User Guide for further details on the digital filter
time.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

23-67

Contec P10-32/32L(PCI)H Digital Input

23-68

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

Contec PIO-32/32L(PCI)H Digital Output

Purpose

Library

Scaling
Input to
Output

Block

Parameters

PIO-32/32L(PCI)H Digital Output block

xPC Target Library for Contec

Block Input Data

Hardware Output Type Scaling

TTL Double (Format:32 Double:
1-bit Channels) < 0.5 =TTL low
uint32 >0.5 = TTL high

(Format:Single

32-bit Port) wint32:

Bit clear = TTL low
Bit set = TTL high

Format
From the list, select either

® 32 1-bit Channels — Indicates that the channel vector
specifies the configuration of the block. Each output is a double
with value of O or 1. The value is 0 when the hardware input
voltage is low.

e Single 32-bit Port — Indicates that the output from the
block is a 32-bit integer where all 32 bits on the board feed
into the single output. The least significant bit is the lowest
numbered bit in the Contec user manual.

If you choose this mode, use the bit packing and unpacking
blocks (Digital I/0 Bit-Packing and Digital I/O Bit-Unpacking)
to construct appropriate data frames.

23-69

Contec P10-32/32L(PCI)H Digital Output

23-70

Channel vector

(82 1-bit Channels mode only) Enter a vector of numbers to
specify the output channels. For example, to use the first and
third digital output channels, enter

(1, 3]

The channel numbers can occur in any order, but the numbers
must be in the range 1 to 32.

Initial value vector

The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started.

Final action vector

The final action vector controls the behavior of the channel at
model termination. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
setting is used for all channels. If you specify a value of 1, the
corresponding channel is reset to the value specified in the initial
value vector. If you specify a value of -1, the block sets the
channel to the value specified in the Final value vector value
for that channel. If you specify a value of 0, the channel remains
at the last value attained while the model was running.

Final value vector

The final value vector contains the final value for each output
channel. Enter a scalar or a vector that is the same length as the
channel vector. If you specify a scalar value, that setting is used
for all channels. If the Final action vector is -1, the block sets
the channel to this value on model termination.

Sample time

Enter the base sample time or a multiple of the base sample time.

Contec PIO-32/32L(PCI)H Digital Output

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpeci

23-71

Contec PIO-32/32T(PCI)

Board

General
Description

Board
Characteristics

23-72

Contec PIO-32/32T(PCI)

The Contec PI0-32/32T(PCI) is an I/0 board with 32 digital input
channels and 32 output channels.

The xPC Target block library supports this board with these driver
blocks:

® Contec PIO-32/32T(PCI) Digital Input
e Contec PIO-32/32T(PCI) Digital Output

The xPC Target software does not support the timer, external trigger,
or interrupt functionality of this board.

Board name PIO-32/32T(PCI)
Manufacturer Contec
Bus type PCI

Multiple block instance support No
Multiple board support Yes

Contec P10-32/32T(PCI) Digital Input

Purpose
Library
Scaling

Input to
Output

Block
Parameters

PI0-32/32T(PCI) Digital Input block

xPC Target Library for Contec

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

1I/0 format
Select serial or parallel. If you select serial, the block is
configured to accept up to 32 one-bit input channels. If you select
parallel, the block is configured to accept a single 32-bit input
channel and the channel vector parameter is unavailable.

Channel vector
If you selected serial I/O format, enter a vector of numbers to
specify the input channels for serial I/O format. For example, to
use the first and third digital input channels, enter

[1, 3]

The channel numbers can occur in any order, but the numbers
must be in the range 1 to 32.

Sample time
Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)
If only one board of this type is in the target PC, enter

-1

to automatically locate the board.

23-73

Contec P10-32/32T(PCI) Digital Input

23-74

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

The device ID of this board is 8152.

Contec P10-32/32T(PCl) Digital Output

Purpose
Library
Scaling

Input to
Output

Block
Parameters

PIO-32/32T(PCI) Digital Output block

xPC Target Library for Contec

Hardware Output Block Input Data Type Scaling

TTL Double <0.5=TTL low
> 0.5 TTL high

1I/0 format
Select serial or parallel. If you select serial, the block is
configured to accept up to 32 one-bit input channels for output.
If you select parallel, the block is configured to accept a single
32-bit channel and the channel vector parameter is unavailable.

Channel vector
For serial I/O format, enter a vector of numbers to specify the
output channels. For example, to use the first and third digital
output channels, enter

[1, 3]

The channel numbers can occur in any order, but the numbers
must be in the range 1 to 32.

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector
The initial value vector contains the initial voltage values (0 or
1) for the output channels. Enter a scalar or a vector that is the

23-75

Contec P10-32/32T(PCI) Digital Output

23-76

same length as the channel vector. If you specify a scalar value,
that value is the initial value for all channels. The channels are
set to the initial values between the time the model i1s downloaded
and the time it is started. If you selected parallel I/O format,
the values can be in the form [hex2dec(ffffffff)].

Sample time

Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)

If only one board of this type is in the target PC, enter

-1
to automatically locate the board.
If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To

determine the bus number and the PCI slot number, type

getxpcpeci

The device ID of this board is 8152.

Contec PO-64L(PCI)H

Board

General
Description

Board
Characteristics

Contec PO-64L(PCI)H

The Contec PO-64L(PCIH is a digital output board with 64 digital
output channels. The supporting block can control up to 32 bits that
you can configure as either a single 32-bit port (Single 32-bit Port
mode) or up to 32 1-bit channels (32 1-bit Channels mode).

The xPC Target block library supports this board with this driver block:

¢ Contec PO-64L(PCI)H Digital Output

Board name PO-64L(PCDHH

Manufacturer Contec

Bus type PCI

Multiple block instance Yes — for 32 1-bit Channels mode
support

Multiple board support Yes

23-77

Contec PO-64L(PCI)H Digital Output

Purpose PO-64L(PCI)H Digital Output block
Librclry xPC Target Library for Contec
Scaling Hardware Block Input Data
Input to Output Type Scaling
Output TTL Double (Format:32 Double:
1-bit Channels) <0.5=TTL low
uint32 >0.5 = TTL high

(Format:Single

32-bit Port) wint32:

Bit clear = TTL low
Bit set = TTL high

Block Format
Parameters From the list, select either

® 32 1-bit Channels — Indicates that the channel vector
specifies the configuration of the block. Each output is a double
with value of 0 or 1. The value is 0 when the hardware input
voltage is low.

With this mode, the block reads, modifies, then writes the data.
This enables you to use multiple instances of this block, with
each block addressing a different bit. However, for efficiency,
use a single block for each 32-bit group. Use multiple block
instances only if your application requires multiple accesses.

e Single 32-bit Port — Indicates that the output from the
block is a 32-bit integer where all 32 bits on the board feed
into the single output. The least significant bit is the lowest
numbered bit in the Contec user manual.

23-78

Contec PO-64L(PCI)H Digital Output

If you choose this mode, use the bit packing and unpacking
blocks (Digital I/0 Bit-Packing and Digital I/O Bit-Unpacking)
to construct appropriate data frames.

Group
From the list, select either

® A (Bits 0-31) — Selects the 32-bit word from Group A to
address.

® B (Bits 32-63) — Selects the 32-bit word from Group B to
address.

Channel vector
(82 1-bit Channels mode only) Enter a vector of numbers to
specify the output channels. For example, to use the first and
third digital output channels, enter

(1, 3]

This vector indexes into group A or B channels. For group A,
channel vector [1, 3] specifies channels 0 and 2. For group B,
channel vector [1, 3] specifies channels 32 and 34.

The channel numbers can occur in any order, but the numbers
must be in the range 1 to 32.

Initial value vector
The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started.

Final action vector
The final action vector controls the behavior of the channel at
model termination. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
setting is used for all channels. If you specify a value of 1, the

23-79

Contec PO-64L(PCI)H Digital Output

23-80

corresponding channel is reset to the value specified in the initial
value vector. If you specify a value of -1, the block sets the
channel to the value specified in the Final value vector value
for that channel. If you specify a value of 0, the channel remains
at the last value attained while the model was running.

Final value vector

The final value vector contains the final value for each output
channel. Enter a scalar or a vector that is the same length as the
channel vector. If you specify a scalar value, that setting is used
for all channels. If the Final action vector is -1, the block sets
the channel to this value on model termination.

Sample time

Enter the base sample time or a multiple of the base sample time.

PCI Slot (-1:autosearch)

If only one board of this type is in the target PC, enter

-1
to automatically locate the board.

If two or more boards of this type are in the target PC, enter the
bus number and the PCI slot number of the board associated with
this driver block. Use the format [BusNumber, SlotNumber]. To
determine the bus number and the PCI slot number, type

getxpcpei

Data Translation

This chapter describes Data Translation® I/O boards supported by the xPC
Target product (http://www.datx.com).

Data Translation DT2821

Data Translation DT2821-F-8DI

Data Translation DT2821-G-8DI

Data Translation DT2821-F-16SE

I/0 board with 16 single-ended or

8 differential analog input (A/D)
channels, 2 analog output (D/A)
channels, and 16 digital I/O lines
that can be configured in groups of 8
for either input or output.

I/0 board with 8 differential analog
input (A/D) channels, 2 analog
output (D/A) channels, and 16 digital
I/0 lines that can be configured in
groups of 8 for either input or output.

I/0 board with 8 differential analog
input (A/D) channels, 2 analog
output (D/A) channels, and 16 digital
I/0 lines that can be configured in
groups of 8 for either input or output.

I/0 board with 16 single-ended
analog input (A/D) channels, 2
analog output (D/A) channels, and
16 digital I/O lines that can be
configured in groups of 8 for either
input or output

http://www.datx.com

24 Data Translation

24-2

Data Translation DT2821-G-8DI

Data Translation DT2823

Data Translation DT2824-PGH

Data Translation DT2824-PGL

Data Translation DT2825

Data Translation DT2827

I/0 board with 16 single-ended
analog input (A/D) channels, 2
analog output (D/A) channels
(12-bit), and 16 digital I/O lines that
can be configured in groups of 8 for
either input or output.

1/0 board 4 differential analog input
(A/D) channels, 2 analog output
(D/A) channels, and 16 digital I/O
lines that can be configured in
groups of 8 for either input or output.

I/0 board with 16 single-ended or

8 differential analog input (A/D)
channels, 2 analog output (D/A)
channels, and 16 digital I/O lines
that can be configured in groups of 8
for either input or output.

I/0 board with 16 single-ended or

8 differential analog input (A/D)
channels, 2 analog output (D/A)
channels, and 16 digital I/O lines
that can be configured in groups of 8
for either input or output.

I/0 board with 16 single-ended or

8 differential analog input (A/D)
channels, 2 analog output (D/A)
channels, and 16 digital I/O lines
that can be configured in groups of 8
for either input or output.

1/0 board with 4 differential analog
input (A/D) channels, 2 analog
output (D/A) channels, and 16 digital
I/0 lines that can be configured in
groups of 8 for either input or output.

Data Translation DT2828

“Boards and Blocks — Alphabetical
List” on page 24-4

I/0 board with 4 single-ended analog
input (A/D) channels, 2 analog
output (D/A) channels, and 16 digital
I/0 lines that can be configured in
groups of 8 for either input or output.

Description of block parameters for
Data Translation driver blocks.

24-3

24 Data Translation

Boards and Blocks — Alphabetical List

24-4

Data Translation DT2821
|

Board Data Translation DT2821
General The DT2821 is an I/O board with 16 single-ended or 8 differential
Descripticn analog input (A/D) channels (12-bit) with a maximum sample rate of 50

kHz, 2 analog output (D/A) channels (12-bit), and 16 digital I/O lines
that can be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

e Data Translation DT2821 Analog Input (A/D)

¢ Data Translation DT2821 Analog Output (D/A)

¢ Data Translation DT2821 Digital Input

® Data Translation DT2821 Digital Output

Board .. Board Name DT2821
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

24-5

Data Translation DT2821 Analog Input (A/D)

24-6

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2821 Analog Input block

xPC Target Library for Data Translation

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector

If you choose Single-ended (16 channels) from the Input
coupling list, enter numbers between 1 and 16. If you choose
Differential (8 channels) from the Input coupling list,
enter numbers between 1 and 8. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector

Enter 1, 2, 4, or 8 for each of the channels in the Channel vector
to specify the gain for that channel. The gain vector must be the
same length as the Channel vector. (If your enter a scalar, it

is automatically expanded to channel vector). This driver allows
the gain of each channel to be different. The gain is applied prior
to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

Data Translation DT2821 Analog Input (A/D)

Range
From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V
(0 volts to +10 volts). This specifies the effective range which is
the same for all channels and must correspond with the input
range setting on the board.

Input coupling
From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)
e Differential channels (8 channels)

This choice must correspond to the input mode setting on the
board.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-7

Data Translation DT2821 Analog Output (D/A)

24-8

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2821 Analog Output block

xPC Target Library for Data Translation

Hardware
Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

Data Translation DT2821 Analog Output (D/A)

Input Range (V) Range Code
0 to +5 5
0 to +10 10

For example, if the first channel is -10 to +10 volts and the second

channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1

and 2, respectively).

Sample time

Base sample time of a multiple of the base sample time.

Base address

Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-9

Data Translation DT2821 Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-10

DT2821 Digital Input block
xPC Target Library for Data Translation

DT2821 series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input

or output. Use a separate driver block for each port. By selecting the
digital input driver block for a given port, that port is configured for
input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2821 Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-11

Data Translation DT2821 Digital Output

Purpose DT2821 Digital Output block
Librclry xPC Target Library for Data Translation
Note DT2821 series boards have two I/O ports, each containing 8 digital 1/0

lines. These ports can be configured independently for either input
or output. Use a separate driver block for each port. By selecting the
digital output driver block for a given port, that port is configured for

output.
Scaling of Hardware
Input to Output Block Input Data Type Scaling
Output TTL Double <0.5 = TTL low
>0.5 = TTL high
Block Port
Parameters From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-12

Data Translation DT2821 Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-13

Data Translation DT2821-F-8DI

Board Data Translation DT2821-F-8DI
General The DT2821-F-8DI is an I/O board with 8 differential analog input
Descripticn (A/D) channels (12-bit) with a maximum sample rate of 150 kHz, 2

analog output (D/A) channels (12-bit), and 16 digital I/O lines that can
be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2821-F-8DI Analog Input (A/D)
Data Translation DT2821-F-8DI Analog Output (D/A)
Data Translation DT2821-F-8DI Digital Input

Data Translation DT2821-F-8DI Digital Output

Board Board Name DT2821-F-8DI
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/O mapped
Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

24-14

Data Translation DT2821-F-8DI Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2821-F-8DI Analog Input block

xPC Target Library for Data Translation

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 8. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector
Enter 1, 2, 4, or 8 for each of the channels in the Channel vector
to specify the gain for that channel. The gain vector must be the
same length as the Channel vector. (If your enter a scalar, it
1s automatically expanded to channel vector). This driver allows
the gain of each channel to be different. The gain is applied prior
to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

Range
From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V
(0 volts to +10 volts). This specifies the effective range which is
the same for all channels and must correspond with the input
range setting on the board.

24-15

Data Translation DT2821-F-8DI Analog Input (A/D)

24-16

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Data Translation DT2821-F-8DI Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2821-F-8DI Analog Output block

xPC Target Library for Data Translation

Hardware
Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

24-17

Data Translation DT2821-F-8DI Analog Output (D/A)

Input Range (V) Range Code
0 to +5 5
0 to +10 10

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1
and 2, respectively).

Sample time
Base sample time of a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-18

Data Translation DT2821-F-8DI Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

DT2821-F-8DI Digital Input block
xPC Target Library for Data Translation

DT2821-F-8DI series boards have two I/0O ports, each containing 8
digital I/0 lines. These ports can be configured independently for either
input or output. Use a separate driver block for each port. By selecting
the digital input driver block for a given port, that port is configured
for input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-19

Data Translation DT2821-F-8DI Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-20

Data Translation DT2821-F-8DI Digital Output
|

Purpose DT2821-F-8DI Digital Output block
Librclry xPC Target Library for Data Translation
Note DT2821-F-8DI series boards have two I/0O ports, each containing 8

digital I/0 lines. These ports can be configured independently for either
input or output. Use a separate driver block for each port. By selecting
the digital output driver block for a given port, that port is configured

for output.
Scaling of Block Input Data
Input to Hardware Output Type Scaling
Output TTL Double <0.5 = TTL low
>0.5 = TTL high
Block Port
Parameters From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-21

Data Translation DT2821-F-8DI Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-22

Data Translation DT2821-G-8DI
|

Board Data Translation DT2821-G-8DI
General The DT2821-G-8DI is an I/O board with 8 differential analog input
Descripticn (A/D) channels (12-bit) with a maximum sample rate of 250 kHz, 2

analog output (D/A) channels (12-bit), and 16 digital I/O lines that can
be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2821-G-8DI Analog Input (A/D)
Data Translation DT2821-G-8DI Analog Output (D/A)
Data Translation DT2821-F-8DI Digital Input

Data Translation DT2821-F-8DI Digital Output

Board .. Board Name DT2821-G-8DI
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped
Multiple block instance A/D:No, D/A:No, Digital I/0:Yes
support

Multiple board support Yes

24-23

Data Translation DT2821-G-8DI Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

24-24

DT2821-G-8DI Analog Input block

xPC Target Library for Data Translation

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 8. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector
Enter 1, 2, 4, or 8 for each of the channels in the Channel vector
to specify the gain for that channel. The gain vector must be the
same length as the Channel vector. (If your enter a scalar, it
1s automatically expanded to channel vector). This driver allows
the gain of each channel to be different. The gain is applied prior
to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

Range
From the list, choose either +-10V (-10 volts to +10 volts), +-5V
(-5 volts to +5 volts), or 0-10V (0 volts to +10 volts). This specifies
the effective range which is the same for all channels and must
correspond with the input range setting on the board.

Data Translation DT2821-G-8DI Analog Input (A/D)

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-25

Data Translation DT2821-G-8DI Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

24-26

DT2821-G-8DI Analog Output block

xPC Target Library for Data Translation

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

0 to +5 5

0 to +10 10

Data Translation DT2821-G-8DI Analog Output (D/A)

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1
and 2, respectively).

Sample time
Base sample time of a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-27

Data Translation DT2821-G-8DI Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-28

DT2821-G-8DI Digital Input block
xPC Target Library for Data Translation

DT2821-G-8DI series boards have two I/O ports, each containing 8
digital I/O lines. These ports can be configured independently for either
input or output. Use a separate driver block for each port. By selecting
the digital input driver block for a given port, that port is configured
for input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

[1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2821-G-8DI Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-29

Data Translation DT2821-G-8DI Digital Output

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-30

DT2821-G-8DI Digital Output block
xPC Target Library for Data Translation

DT2821-G-8DI series boards have two I/O ports, each containing 8
digital I/O lines. These ports can be configured independently for either
input or output. Use a separate driver block for each port. By selecting
the digital output driver block for a given port, that port is configured
for output.

Hardware Output Block Input Data Type Scaling
TTL Double <0.5 =TTL low
>0.5 = TTL high

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

[1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2821-G-8DI Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-31

Data Translation DT2821-F-16SE

Board Data Translation DT2821-F-16SE
General The DT2821-F-16SE is an I/O board with 16 single-ended analog input
Descripticn (A/D) channels (12-bit) with a maximum sample rate of 150 kHz, 2

analog output (D/A) channels (12-bit), and 16 digital I/O lines that can
be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2821-F-16SE Analog Input (A/D)
Data Translation DT2821-F-16SE Analog Output (D/A)
Data Translation DT2821-F-16SE Digital Input

Data Translation DT2821-F-16SE Digital Output

Board .. Board Name DT2821-F-16SE
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

24-32

Data Translation DT2821-F-16SE Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2821-F-16SE Analog Input block

xPC Target Library for Data Translation

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 16. For example, to use the first
and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector
Enter 1, 2, 4, or 8 for each of the channels in the Channel vector
to specify the gain for that channel. The gain vector must be the
same length as the Channel vector. (If your enter a scalar, it
1s automatically expanded to channel vector). This driver allows
the gain of each channel to be different. The gain is applied prior
to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

Range
From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V
(0 volts to +10 volts). This specifies the effective range which is
the same for all channels and must correspond with the input
range setting on the board.

24-33

Data Translation DT2821-F-16SE Analog Input (A/D)

24-34

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Data Translation DT2821-F-16SE Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2821-F-16SE Analog Output block

xPC Target Library for Data Translation

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

0 to +5 5

0 to +10 10

24-35

Data Translation DT2821-F-16SE Analog Output (D/A)

24-36

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1
and 2, respectively).

Sample time
Base sample time of a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Data Translation DT2821-F-16SE Digital Input
|

Purpose DT2821-F-16SE Digital Input block
Librclry xPC Target Library for Data Translation
Note DT2821-F-16SE series boards have two I/O ports, each containing

8 digital I/O lines. These ports can be configured independently for
either input or output. Use a separate driver block for each port. By
selecting the digital input driver block for a given port, that port is
configured for input.

Scaling of Block Output Data

Input to Hardware Input Type Scaling

Output TTL Double TTL low = 0.0
TTL high =1.0

Block Port

Parameters From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-37

Data Translation DT2821-F-16SE Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-38

Data Translation DT2821-F-16SE Digital Output

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

DT2821-F-16SE Digital Output block
xPC Target Library for Data Translation

DT2821-F-16SE series boards have two I/0O ports, each containing 8
digital I/0 lines. These ports can be configured independently for either
input or output. Use a separate driver block for each port. By selecting
the digital output driver block for a given port, that port is configured
for output.

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5=TTL high

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-39

Data Translation DT2821-F-16SE Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-40

Data Translation DT2821-G-16SE
|

Board Data Translation DT2821-G-16SE
General The DT2821-G-16SE is an I/0 board with 16 single-ended analog input
Descripticn (A/D) channels (12-bit) with a maximum sample rate of 250 kHz, 2

analog output (D/A) channels (12-bit), and 16 digital I/O lines that can
be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2821-G-16SE Analog Input (A/D)
Data Translation DT2821-G-16SE Analog Output (D/A)
Data Translation DT2821-G-16SE Digital Input

Data Translation DT2821-G-16SE Digital Output

Board .. Board Name DT2821-G-16SE
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/0O:Yes
Multiple board support Yes

24-41

Data Translation DT2821-G-16SE Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

24-42

DT2821-G-16SE Analog Input block

xPC Target Library for Data Translation

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 16. For example, to use the first
and third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector
Enter 1, 2, 4, or 8 for each of the channels in the Channel vector
to specify the gain for that channel. The gain vector must be the
same length as the Channel vector. (If your enter a scalar, it
1s automatically expanded to channel vector). This driver allows
the gain of each channel to be different. The gain is applied prior
to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

Range
From the list, choose either +-10V (-10 volts to +10 volts), +-5V
(-5 volts to +5 volts), or 0-10V (0 volts to +10 volts). This specifies
the effective range which is the same for all channels and must
correspond with the input range setting on the board.

Data Translation DT2821-G-16SE Analog Input (A/D)

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-43

Data Translation DT2821-G-16SE Analog Output (D/A)

Purpose DT2821-G-16SE Analog Output block

Librclry xPC Target Library for Data Translation

Scaling of Hardware

Input to Output Block Input Data Type Scaling

OUTPUT Volts Double 1

Block Channel vector

Parameters Enter numbers between 1 and 2. This driver allows the selection

of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

24-44

Data Translation DT2821-G-16SE Analog Output (D/A)

Input Range (V) Range Code
0 to +5 5
0 to +10 10

For example, if the first channel is -10 to +10 volts and the second

channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1

and 2, respectively).

Sample time

Base sample time of a multiple of the base sample time.

Base address

Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-45

Data Translation DT2821-G-16SE Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-46

DT2821-G-16SE Digital Input block
xPC Target Library for Data Translation

DT2821-G-16SE series boards have two I/O ports, each containing

8 digital I/O lines. These ports can be configured independently for
either input or output. Use a separate driver block for each port. By
selecting the digital input driver block for a given port, that port is
configured for input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

[1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2821-G-16SE Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-47

Data Translation DT2821-G-16SE Digital Output

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-48

DT2821-G-16SE Digital Output block
xPC Target Library for Data Translation

DT2821-G-16SE series boards have two I/O ports, each containing 8
digital I/O lines. These ports can be configured independently for either
input or output. Use a separate driver block for each port. By selecting
the digital output driver block for a given port, that port is configured
for output.

Block Input Data
Hardware Output Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2821-G-16SE Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-49

Data Translation DT2823

Board Data Translation DT2823
General The DT2823 is an I/O board 4 differential analog input (A/D) channels
Descripticn (16-bit) with a maximum sample rate of 100 kHz, 2 analog output (D/A)

channels (16-bit), and 16 digital I/O lines that can be configured in
groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2823 Analog Input (A/D)
Data Translation D'T2823 Analog Output (D/A)
Data Translation DT2823 Digital Input

Data Translation DT2823 Digital Output

Board Board Name DT2823
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped
Multiple block instance A/D:No, D/A:No, Digital I/O:Yes
support
Multiple board support Yes

24-50

Data Translation DT2823 Analog Input (A/D)

Purpose
Library
Note
Scaling of

Input to
Output

Block
Parameters

DT2823 Analog Input block
xPC Target Library for Data Translation

The range for the DT2823 is -10 to + 10 volts.

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 4. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]
Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-51

Data Translation DT2823 Analog Output (D/A)

Purpose
Library
Note
Scaling of

Input to
Output

Block
Parameters

24-52

DT2823 Analog Output block
xPC Target Library for Data Translation

The range of the DT2823 is -10 to +10 volts.

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

Data Translation DT2823 Analog Output (D/A)

Input Range (V) Range Code
0 to +5 5
0 to +10 10

For example, if the first channel is -10 to +10 volts and the second

channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1

and 2, respectively).

Sample time

Base sample time of a multiple of the base sample time.

Base address

Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-53

Data Translation DT2823 Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-54

DT2823 Digital Input block
xPC Target Library for Data Translation

DT2823 series boards have two I/O ports, each containing 8 digital I/0
lines. These ports can be configured independently for either input
or output. Use a separate driver block for each port. By selecting the
digital input driver block for a given port, that port is configured for
input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2823 Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-55

Data Translation DT2823 Digital Output

Purpose DT2823 Digital Output block
Librclry xPC Target for Data Translation
Note DT2823 series boards have two I/O ports, each containing 8 digital 1/0

lines. These ports can be configured independently for either input
or output. Use a separate driver block for each port. By selecting the
digital output driver block for a given port, that port is configured for

output.
IScallng of Hardware Output Block Input Data Type Scaling
nput to TTL Double <0.5 = TTL low
Output
vipY >0.5 = TTL high
Block Port
Parameters From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection
of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-56

Data Translation DT2823 Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-57

Data Translation DT2824-PGH

Board

General
Description

Board
Characteristics

24-58

Data Translation DT2824-PGH

The DT2824-PGH is an I/O board with 16 single-ended or 8 differential
analog input (A/D) channels (12-bit) with a maximum sample rate of 50
kHz, 2 analog output (D/A) channels (12-bit), and 16 digital I/O lines
that can be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

¢ Data Translation DT2824-PGH Analog Input (A/D)

e Data Translation DT2824-PGH Digital Input

® Data Translation DT2824-PGH Digital Output

Board Name DT2824-PGH
Manufacturer Data Translation
Bus Type ISA

Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

Data Translation DT2824-PGH Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2824-PGH Analog Input block

xPC Target Library for Data Translation

Block Output Data

Hardware Input Type Scaling
Volts Double 1

Channel vector

If you choose Single-ended (16 channels) from the Input
coupling list, enter numbers between 1 and 16. If you choose
Differential (8 channels) from the Input coupling list, then
enter numbers between 1 and 8. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector

Enter 1, 2, 4, or 8 for each of the channels in the Channel vector
to specify the gain for that channel. The gain vector must be the
same length as the Channel vector. (If your enter a scalar, it

is automatically expanded to channel vector). This driver allows
the gain of each channel to be different. The gain is applied prior
to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

24-59

Data Translation DT2824-PGH Analog Input (A/D)

24-60

Range
From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V
(0 volts to +10 volts). This specifies the effective range which is
the same for all channels and must correspond with the input
range setting on the board.

Input coupling
From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

This choice must correspond to the input mode setting on the
board.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

For example, if the first channel is -10 to +10 volts, and the second
channel is 0 to 5 volts, enter

[-10,5]

Data Translation DT2824-PGH Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

DT2824-PGH Digital Input block
xPC Target Library for Data Translation

DT2824-PGH series boards have two I/0O ports, each containing 8
digital I/0 lines. These ports can be configured independently for either
input or output. Use a separate driver block for each port. By selecting
the digital input driver block for a given port, that port is configured
for input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-61

Data Translation DT2824-PGH Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-62

Data Translation DT2824-PGH Digital Output
|

Purpose DT2824-PGH Digital Output block
Librclry xPC Target Library for Data Translation
Note DT2824-PGH series boards have two I/0 ports, each containing 8 digital

I/0 lines. These ports can be configured independently for either input
or output. Use a separate driver block for each port. By selecting the
digital output driver block for a given port, that port is configured for

output.
Scaling of Hardware Output Block Input Data Type Scaling
|61PU|' fo TTL Double <0.5 =TTL low
utput >0.5=TTL high
Block Port
Parameters From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-63

Data Translation DT2824-PGH Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-64

Data Translation DT2824-PGL

Board

General
Description

Board
Characteristics

Data Translation DT2824-PGL

The DT2824-PGL is an I/O board with 16 single-ended or 8 differential
analog input (A/D) channels (12-bit) with a maximum sample rate of 50
kHz, 2 analog output (D/A) channels (12-bit), and 16 digital I/O lines
that can be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver

blocks:

¢ Data Translation DT2824-PGL Analog Input (A/D)
e Data Translation DT2824-PGL Digital Input
¢ Data Translation DT2824-PGL Digital Output

Board Name
Manufacturer
Bus Type
Access Method

Multiple block instance
support

Multiple board support

DT2824-PGL

Data Translation

ISA

I/O mapped

A/D:No, D/A:No, Digital I/0:Yes

Yes

24-65

Data Translation DT2824-PGL Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

24-66

DT2824-PGL Analog Input block

xPC Target Library for Data Translation

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector

If you choose Single-ended (16 channels) from the Input
coupling list, enter numbers between 1 and 16. If you choose
Differential (8 channels) from the Input coupling list, then
enter numbers between 1 and 8. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector

Enter 1, 10, 100, or 500 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector
must be the same length as the Channel vector. (If your enter
a scalar, it is automatically expanded to channel vector). This
driver allows the gain of each channel to be different. The gain is
applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

Range

From the list, choose either +-10V (-10 volts to +10 volts), or 0-10V
(0 volts to +10 volts). This specifies the effective range which is

Data Translation DT2824-PGL Analog Input (A/D)

the same for all channels and must correspond with the input
range setting on the board.

Input coupling
From the list, select one from the following list of input modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

This choice must correspond to the input mode setting on the
board.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

For example, if the first channel is -10 to +10 volts, and the second
channel is 0 to 5 volts, enter

[-10,5]

24-67

Data Translation DT2824-PGL Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-68

DT2824-PGL Digital Input block

xPC Target Library for Data Translation

DT2824-PGL series boards have two I/O ports, each containing 8 digital
I/0 lines. These ports can be configured independently for either input

or output. Use a separate driver block for each port. By selecting the
digital input driver block for a given port, that port is configured for
input.

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0
Port

From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer

starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2824-PGL Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-69

Data Translation DT2824-PGL Digital Output

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-70

DT2824-PGL Digital Output block
xPC Target Library for Data Translation

DT2824-PGL series boards have two I/O ports, each containing 8 digital
I/0 lines. These ports can be configured independently for either input
or output. Use a separate driver block for each port. By selecting the
digital output driver block for a given port, that port is configured for
output.

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 = TTL low
>0.5 = TTL high

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2824-PGL Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-71

Data Translation DT2825

Board Data Translation DT2825
General The DT2825 is an I/O board with 16 single-ended or 8 differential
Descripticn analog input (A/D) channels (12-bit) with a maximum sample rate of 45

kHz, 2 analog output (D/A) channels (12-bit), and 16 digital I/O lines
that can be configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2825 Analog Input (A/D)
Data Translation D'T2825 Analog Output (D/A)
Data Translation DT2825 Digital Input

Data Translation DT2825 Digital Output

Board Board Name DT2825
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

24-72

Data Translation DT2825 Analog Input (A/D)
|

Purpose DT2825 Analog Input block

Librclry xPC Target Library for Data Translation

IScaImg of Hardware Input Block Output Data Type Scaling
nput to Volts Double 1

Output

Block Channel vector

Parameters If you choose Single-ended (16 channels) from the Input

coupling list, enter numbers between 1 and 16. If you choose
Differential (8 channels) from the Input coupling list, then
enter numbers between 1 and 8. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector
Enter 1, 10, 100, or 500 for each of the channels in the Channel
vector to specify the gain for that channel. The gain vector
must be the same length as the Channel vector. (If your enter
a scalar, it is automatically expanded to channel vector). This
driver allows the gain of each channel to be different. The gain is
applied prior to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

24-73

Data Translation DT2825 Analog Input (A/D)

24-74

Range
From the list, choose either +-10V (-10 volts to +10 volts), or 0- 10V
(0 volts to +10 volts). This specifies the effective range which is
the same for all channels and must correspond with the input
range setting on the board.

Input coupling
From the list, choose one of the input modes:

® Single-ended channels (16 channels)
e differential channels (8 channels)

This choice must correspond to the input mode setting on the

board.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this

entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Data Translation DT2825 Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

DT2825 Analog Output block

xPC Target Library for Data Translation

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

0 to +5 5

0 to +10 10

24-75

Data Translation DT2825 Analog Output (D/A)

24-76

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings have to correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1
and 2, respectively).

Sample time
Base sample time of a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Data Translation DT2825 Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

DT2825 Digital Input block
xPC Target Library for Data Translation

DT2825 series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input

or output. Use a separate driver block for each port. By selecting the
digital input driver block for a given port, that port is configured for
input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input
lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-77

Data Translation DT2825 Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-78

Data Translation DT2825 Digital Output

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

DT2825 Digital Output block
xPC Target Library for Data Translation

DT2825 series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input

or output. Use a separate driver block for each port. By selecting the
digital output driver block for a given port, that port is configured for
output.

Hardware
Output Block Input Data Type Scaling
TTL Double <0.5 =TTL low >0.5
= TTL high
Port

From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-79

Data Translation DT2825 Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-80

Data Translation DT2827
|

Board Data Translation DT2827
General The DT2827 is an I/O board with 4 differential analog input (A/D)
Descripticn channels (16-bit) with a maximum sample rate of 100 kHz, 2 analog

output (D/A) channels (12-bit), and 16 digital I/O lines that can be
configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2827 Analog Input (A/D)
Data Translation D'T2827 Analog Output (D/A)
Data Translation DT2827 Digital Input

Data Translation DT2827 Digital Output

Board Board Name DT2827
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

24-81

Data Translation DT2827 Analog Input (A/D)

Purpose
Library
Note
Scaling of

Input to
Output

Block
Parameters

24-82

DT2827 Analog Input block
xPC Target Library for Data Translation

The range for this board is -10 to +10 volts.

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 4. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Data Translation DT2827 Analog Output (D/A)

Purpose
Library
Note
Scaling of

Input to
Output

Block
Parameters

DT2827 Analog Output block
xPC Target Library for Data Translation

The range for this board is -10 to + 10 volts.

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

24-83

Data Translation DT2827 Analog Output (D/A)

Input Range (V) Range Code
0 to +5 5
0 to +10 10

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1
and 2, respectively).

Sample time
Base sample time of a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-84

Data Translation DT2827 Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

DT2827 Digital Input block
xPC Target Library for Data Translation

DT2827 series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input

or output. Use a separate driver block for each port. By selecting the
digital input driver block for a given port, that port is configured for
input.

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0
Port

From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-85

Data Translation DT2827 Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-86

Data Translation DT2827 Digital Output

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

DT2827 Digital Output block
xPC Target Library for Data Translation

DT2827 series boards have two I/O ports, each containing 8 digital I/O
lines. These ports can be configured independently for either input

or output. Use a separate driver block for each port. By selecting the
digital output driver block for a given port, that port is configured for
output.

Hardware Output Block Input Data Type Scaling

TTL Double <0.5 =TTL low
>0.5=TTL high

Port
From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

[1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-87

Data Translation DT2827 Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-88

Data Translation DT2828
|

Board Data Translation DT2828
General The DT2828 is an I/0 board with 4 single-ended analog input (A/D)
Descripticn channels (12-bit) with a maximum sample rate of 100 kHz, 2 analog

output (D/A) channels (12-bit), and 16 digital I/O lines that can be
configured in groups of 8 for either input or output.

The xPC Target block library supports this board with these driver
blocks:

Data Translation DT2828 Analog Input (A/D)
Data Translation D'T2828 Analog Output (D/A)
Data Translation DT2828 Digital Input

Data Translation DT2828 Digital Output

Board Board Name DT2828
Characteristics Manufacturer Data Translation
Bus Type ISA
Access Method I/0 mapped

Multiple block instance support A/D:No, D/A:No, Digital I/O:Yes
Multiple board support Yes

24-89

Data Translation DT2828 Analog Input (A/D)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

24-90

DT2828 Analog Input block

xPC Target Library for Data Translation

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 4. For example, to use the first and
third analog output (A/D) channels, enter

[1,3]

Number the channels beginning with 1 even if the board
manufacturer starts to number the channels with 0.

Gain vector
Enter 1, 2, 4, or 8 for each of the channels in the Channel vector
to specify the gain for that channel. The gain vector must be the
same length as the Channel vector. (If your enter a scalar, it
is automatically expanded to channel vector). This driver allows
the gain of each channel to be different. The gain is applied prior
to sampling the voltage.

For example, if you have an input signal from -1 to +1 volts, and
a gain of 8, the signal is amplified -8 to +8 volts. Select a range
equal or larger than the amplified voltage. For example, select a
range of +-10V. After the signal voltage is sampled, this block
divides by the gain to output the original signal value.

Range
From the list, choose either +-10V (-10 volts to +10 volts), or
0-10V (0 volts to +10 volts). This specifies the effective range
which is the same for all channels and must correspond with the
input range setting on the board.

Data Translation DT2828 Analog Input (A/D)

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the bass address setting on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-91

Data Translation DT2828 Analog Output (D/A)

Purpose
Library
Scaling of

Input to
Output

Block
Parameters

24-92

DT2828 Analog Output block

xPC Target Library for Data Translation

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 2. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range vector
Enter a range code for each of the channels in the Channel
vector. The range vector must be the same length as the
Channel vector. This board allows the range of each channel
to be different.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

-2.5 to +2.5 -2.5

0 to +5 5

0 to +10 10

Data Translation DT2828 Analog Output (D/A)

For example, if the first channel is -10 to +10 volts and the second
channel is 0 to +5 volts, enter

[-10,5]

The range settings must correspond to the Output Range
Selection settings on the board for DACO and DAC1 (channel 1
and 2, respectively).

Sample time
Base sample time of a multiple of the base sample time.

Base address
Enter the base address of the board. It is important that this
entry corresponds to the DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

24-93

Data Translation DT2828 Digital Input

Purpose
Library

Note

Scaling of
Input to
Output

Block
Parameters

24-94

DT2828 Digital Input block
xPC Target Library for Data Translation

DT2828 series boards have two I/0O ports, each containing 8 digital I/0
lines. These ports can be configured independently for either input

or output. Use a separate driver block for each port. By selecting the
digital input driver block for a given port, that port is configured for
input.

Hardware
Input Block Output Data Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0
Port

From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8 to select the digital input

lines you use with this port. This driver allows the selection
of individual digital input lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital inputs for this port, enter

(1,2,3,4,5,6,7,8]
Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Data Translation DT2828 Digital Input

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-95

Data Translation DT2828 Digital Output

Purpose DT2828 Digital Output block
Librclry xPC Target Library for Data Translation
Note DT2828 series boards have two I/O ports, each containing 8 digital 1/0

lines. These ports can be configured independently for either input
or output. Use a separate driver block for each port. By selecting the
digital output driver block for a given port, that port is configured for

output.
Scaling of Block Input Data
Input to Hardware Output Type Scaling
Output TTL Double <0.5 = TTL low
>0.5 = TTL high
Block Port
Parameters From the list, choose 1 or 2.

Channel vector
Enter numbers between 1 and 8. This driver allows the selection

of individual digital output lines in any order. The number of
elements defines the number of digital lines you use.

For example, to use all of the digital outputs for this port, enter

[1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

24-96

Data Translation DT2828 Digital Output

Base address
Enter the base address of the board. This entry must corresponds
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

24-97

Data Translation DT2828 Digital Output

24-98

Diamond

This chapter describes Diamond Systems I/O boards supported by the xPC
Target product (http://www.diamondsystems.com). To read about the
Diamond Systems serial communications boards supported by xPC Target,
see Chapter 2, “Serial Communications Support”.

Diamond Diamond-MM

Diamond Diamond-MM-16-AT

Diamond Diamond-MM-32-AT

Diamond Garnet-MM

DAS16-compatible I/0 board with 16
single or 8 differential analog input
(A/D) channels, 2 analog output
(D/A) channels, 8 digital input lines,
and 8 digital output lines.

PC/104 1/0O board with 16
single-ended or 8 differential
analog input (A/D) channels (16-bit),
4 optional analog output (D/A)
channels (12-bit), and 8 digital input
and output lines.

PC/104 1/0 board with 32 single or
16 differential analog input (A/D)
channels, 4 analog output (D/A)
channels, and 24 digital input and
output lines.

I/0 board with 24 or 48 high
current digital I/O lines that can be
configured in groups of 8 for either
digital input or digital output.

http://www.diamondsystems.com

25 Diamond

25-2

Diamond Onyx-MM

Diamond Onyx-MM-DIO

Diamond Prometheus and Athena

Diamond Quartz-MM-5

Diamond Quartz-MM-10

Diamond Ruby-MM

Diamond Ruby-MM-416

Diamond Ruby-MM-1612

“Boards and Blocks — Alphabetical
List” on page 25-3

I/0 board with 48 digital I/O lines
that can be configured in groups of
8 for either digital input or digital
output, counters, and timers.

I/0 board with 48 digital I/O lines

that can be configured in groups of
8 for either digital input or digital

output.

Intel 486-based embedded PC/104
CPU board with 4 serial ports, 2 USB
ports, 1 parallel port, keyboard and
mouse ports, floppy and IDE driver
connectors, a 100BaseT Ethernet
connector, and provision for solid
state flashdisk modules.

8 digital input lines and 8 digital
output lines.

8 digital input line and 8 digital
output lines.

PC/104 1/0 board with 4 or 8 single
analog output (D/A) channels,
unipolar and bipolar operation, +/-
10V, +/- 5V, 0-10V, 0-5V fixed ranges,
+/- 2.5V, 0-2.5V user-adjustable
ranges, and 24 digital input and
output lines.

Four 16-bit analog output (D/A)
channels, and 24 digital I/O lines
that can be configured in groups of 8
for either input or output.

Sixteen 12-bit analog output (D/A)
channels, and 24 digital I/O lines
which can be configured in groups of
8 for either input or output.

Description of block parameters for
Diamond Systems driver blocks.

Boards and Blocks — Alphabetical List

Boards and Blocks — Alphabetical List

25-3

Diamond Diamond-MM

25-4

Board

General
Description

Board
Characteristics

Diamond Diamond-MM

The Diamond-MM is a DAS16 compatible I/O board with 16 single or
8 differential analog input (A/D) channels (12-bit) with a maximum
sample rate or 100 kHz, 2 analog output (D/A) channels (12-bit), 8
digital input lines, and 8 digital output lines.

The xPC Target block library supports this board with these driver

blocks:

Diamond MM Digital Input

Diamond MM Digital Output

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

Diamond MM Analog Input (A/D
Diamond MM Analog Output (D/A)

Diamond-MM

Diamond Systems Corporation
PC/104

1/0 mapped

No

Yes

Diamond MM Analog Input (A/D

Purpose
Library
Scaling

Input to
Output

Block
Parameters

MM Analog Input block

xPC Target Library for Diamond

Hardware Input Block Output Data Type Scaling
Volts Double 1

Number of channels

If you select 16 channels (Coupling parameter set to 16
single-ended channels) enter a number between 1 and 16 to
select the number of single A/D channels used. If you select
eight channels (Coupling parameter set to 8 differential
channels) enter a number between 1 and 8.

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Note, you cannot select the starting channel for this block, you can
only select the number of channels. This block works differently
from the Diamond-MM-32-AT A/D block, where you can specify
the starting channel.

Range

Enter an input range code for all A/D channels. This driver does
not allow the selection of a different range for each channel. The
input range is the same for all A/D channels.

The following table is a list of the ranges for this driver and the
corresponding range codes.

Input Range Input Range
(V) Range Code | (V)

-10 to +10 -10 0 to +10 10

Range Code

25-5

Diamond MM Analog Input (A/D

25-6

Input Range Input Range

(\")] Range Code | (V) Range Code
-5 to +5 -5 0 to +5 5

-2.5to+ 2.5 -2.5 0 to +2 2

-1 to +1 -1 0 to +1 1

-0.5 to +0.5 -5

The gain jumpers on the board have to be in the correct positions
for the chosen range. The bipolar jumper on the board has to be in
the bipolar position, if a bipolar range is used or in the unipolar
position, when a unipolar range is used.

Coupling
From the list, select one from the following list of input modes:

® 16 single-ended channels
e 8 differential channels

This choice must correspond to the jumper setting in block J6
on the board.

Show error status output (E)
Select this check box to add a port labeled E to the block and to
display (the contents of) that special port. This output will always
have a value of 0 unless a problem is detected while attempting
an A/D conversion. In the unlikely event that an error occurs, the
port has a nonzero value. This nonzero value takes the form of a
real number whose binary representation of 1’s and 0’s (true and
false) indicates which channels have errors.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

Diamond MM Analog Input (A/D

0x300

25-7

Diamond MM Analog Output (D/A)

25-8

Purpose
Library
Scaling

Input to
Output

Block
Parameters

MM Analog Output block

xPC Target Library for Diamond

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
This parameter is a combined Channel vector and Range vector.
The number of elements defines the number of D/A channels used.

Range vector
Enter a range code for each of the D/A channels used. This driver
allows a different range for each channel with a maximum of 2
channels.

The following table is a list of the ranges for this driver and the
corresponding range codes. The D/A specific jumpers on the board
have to be in the correct positions for the ranges entered.

Input Range (V) Range Code
0 to +10 10
0 to +5 5

For example, if the first channel is 0 to + 10 volts and the second
channel is 0 to +5 volts, enter

[10,5]

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding

Diamond MM Analog Output (D/A)

channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector
The initial value vector contains the initial voltage values for the
input channels. Enter a scalar or a vector that is the same length
as the channel vector. If you specify a scalar value, that value
1s the initial value for all channels. The channels are set to the
initial values between the time the model is downloaded and
the time it is started. If you provide an out-of-range value for a
channel, that value is adjusted to be within the correct range, as
defined in the parameter Range.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

25-9

Diamond MM Digital Input

Purpose MM Digital Input block

Librclry xPC Target Library for Diamond

Scaling Block Output Data

Input to Hardware Input Type Scaling

Output TTL Double TTL low = 0.0
TTL high = 1.0

Block Channel vector

Parameters Enter numbers between 1 and 8. This driver allows the selection

of individual digital input channels in any order. The number of
elements defines the number of digital input channels you use.
For example, to use all the digital input channels, enter

[1:8]
Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address is 300 (hexadecimal), enter

0x300

25-10

Diamond MM Digital Output

Purpose
Library
Scaling

Input to
Output

Block
Parameters

MM Digital Output block

xPC Target Library for Diamond

Hardware Output Block Input Data Type Scaling

Double < 0.5 =TTL low
> 0.5 = TTL high

Channel vector

Enter numbers between 1 and 8. This driver allows the selection
of individual digital input channels in any order. The number of
elements defines the number of digital input channels you use.
For example, to use all the digital output channels, enter

[1:8]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Reset vector

The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector

The initial value vector contains the initial voltage values for the
input channels. Enter a scalar or a vector that is the same length
as the channel vector. If you specify a scalar value, that value

is the initial value for all channels. The channels are set to the
initial values between the time the model is downloaded and

the time it is started. If you provide an out-of-range value for a

25-11

Diamond MM Digital Output

25-12

channel, that value is adjusted to be within the correct range, as
defined in the parameter Range.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

Diamond Diamond-MM-16-AT

Board

General
Description

Board
Characteristics

Diamond Diamond-MM-16-AT

The Diamond MM-AT is a PC104 I/O board with 16 single-ended or
8 differential analog input (A/D) channels (16-bit), 4 optional analog
output (D/A) channels (12-bit), 8 digital input and output lines.

Diamond-MM-16-AT boards have an 8-bit digital input port and an

8-bit digital output port.

The xPC Target block library supports this board with these driver

blocks:

Diamond MM-16-AT Analog Input (A/D)
Diamond MM-16-AT Analog Output (D/A)
Diamond MM-16-AT Digital Input
Diamond MM-16-AT Digital Output

The xPC Target software does not support the counters/timers on this

board.

Board name

Manufacturer

Bus type

Access method

Multiple block instance support
Multiple board support

Diamond-MM-16-AT

Diamond Systems Corporation
PC/104

I/0 mapped

No

Yes

25-13

Diamond MM-16-AT Analog Input (A/D)

Purpose MM-16-AT Analog Input block
Librclry xPC Target Library for Diamond
IScaImg Hardware Input Block Output Data Type Scaling
nput fo Volts Double 1
Output
Block First Channel
Parameters Enter the number of the first channel in a set of contiguous analog

input channels. Depending on the channel configuration selected,
the first channel number must be within the range 1 through

8 (Coupling parameter set to 8 differential channels) or

1 through 16 (Coupling parameter set to 16 single-ended
channels).

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Number of Channels
Enter the number of input channels you want to use. The
maximum number of channels varies between 1 and 16 and
depends on the values of Coupling and the First channel
number.

Range
From the list, choose a voltage range. The input range applies
to all channels.

Coupling
From the list, select one from the following list of input modes:

¢ Single-ended (16 channels)
¢ Differential (8 channels)

This choice must correspond to the jumper setting in block J4
on the board.

25-14

Diamond MM-16-AT Analog Input (A/D)

Show error status output (E)
Select this check box to add a port labeled E to the block and to
display (the contents of) that special port. This output will always
have a value of 0 unless a problem is detected while attempting
an A/D conversion. In the unlikely event that an error occurs, the
port has a nonzero value. This nonzero value takes the form of a
real number whose binary representation of 1’s and 0’s (true and
false) indicates which channels have errors.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond

to the base address DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

25-15

Diamond MM-16-AT Analog Output (D/A)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

25-16

MM-16-AT Analog Output block

xPC Target Library for Diamond

Hardware Output Block Output Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 4. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range
From the list, select 0 to 5V or -5V to 5V as the input voltage
range of the board. The input range applies to all channels.

This choice must correspond to the jumper setting in block J5
on the board.

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Diamond MM-16-AT Analog Output (D/A)

Initial value vector
The initial value vector contains the initial voltage values for the
input channels. Enter a scalar or a vector that is the same length
as the channel vector. If you specify a scalar value, that value
1s the initial value for all channels. The channels are set to the
initial values between the time the model is downloaded and
the time it is started. If you provide an out-of-range value for a
channel, that value is adjusted to be within the correct range, as
defined in the parameter Range.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the base address DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

25-17

Diamond MM-16-AT Digital Input

Purpose

Library

Scaling
Input to
Output

Block
Parameters

25-18

MM-16-AT Digital Input block

xPC Target Library for Diamond

Hardware
Output Block Output Data Type Scaling
TTL Double TTL low = 0.0

TTL high = 1.0

Channel vector
Enter numbers between 1 and 8. This driver allows the selection
of individual digital input channels in any order. The number of
elements defines the number of digital input channels you use.
For example, to use all the digital input channels, enter

[1:8]
Number the channels beginning with 1 even if the board

manufacturer starts numbering the channels with 0.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the base address DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Diamond MM-16-AT Digital Output

Purpose

Library

Scaling
Input to
Output

Block
Parameters

MM-16-AT Digital Output block

xPC Target Library for Diamond

Block Output Data

Hardware Output Type Scaling
Double TTL low = 0.0
TTL high = 1.0

Channel vector

Enter numbers between 1 and 8. This driver allows the selection
of individual digital output channels in any order. The number of
elements defines the number of digital output channels you use.
For example, to use all of the digital output channels, enter

[1:8]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Reset vector

The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector

The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started. If you provide an out-of-range value for a

25-19

Diamond MM-16-AT Digital Output

25-20

channel, that value is adjusted to be within the correct range, as
defined in the parameter Range.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the base address DIP switch settings on the board. For
example, if the base address is 300 (hexadecimal), enter

0x300

Diamond Diamond-MM-32-AT
|

Board Diamond Diamond-MM-32-AT
General The Diamond-MM-32-AT is a PC104 I/O board with 32 single or 16
Descripticn differential analog input (A/D) channels (16-bit) with a maximum

sample rate of 200 kHz, 4 analog output (D/A) channels (12-bit), 24
digital input and output lines.

The xPC Target block library supports this board with these driver
blocks. These blocks also support the Diamond-MM-32X-AT board.
¢ Diamond MM-32-AT Analog Input (A/D)

Diamond MM-32-AT Frame Analog Input (A/D)

Diamond MM-32-AT Analog Output (D/A)

Diamond MM-32-AT Digital Input

Diamond MM-32-AT Digital Output

Board .. Board name Diamond-MM-32-AT
Characteristics Manufacturer Diamond Systems Corporation
Bus type PC/104
Access method I/0 mapped
Multiple block instance support A/D:No
D/A:Yes
DIO:Yes
Multiple board support Yes

25-21

Diamond MM-32-AT Analog Input (A/D)

Purpose MM-32-AT Analog Input block

Librclry xPC Target Library for Diamond

IScaImg Hardware Input Block Output Data Type Scaling
nput fo Volts Double 1
Output

Block Channel configuration

Parameters From the list, select the following. Refer to the

Diamond-MM-32-AT documentation for a description of the
configuration modes.

® 1-32 SE to select the configuration mode labeled A (32
single-ended input channels)

® 1-16 DI to select the configuration mode labeled B (16
differential input channels)

e 1-8SE 9-16 DI 17-24 SE to select the configuration mode
labeled D (eight single-ended input channels labeled 1 through
8, eight differential input channels labeled 9 through 16, and
an additional eight single-ended input channels labeled 17
through 24).

Note that the selected channel configuration must match the
configuration set by the jumpers in block J5. This driver does
not support mode C.

First channel number
Enter the number of the first channel in a set of contiguous
channels. Depending on the value of the Channel Configuration
parameter, the first channel number must be within the range 1
through 32, 1 through 16, or 1 through 24.

Number of channels
Enter the number of input channels you want to use. The
maximum number of channels varies between 1 and 32 and

25-22

Diamond MM-32-AT Analog Input (A/D)

depends on Channel configuration and the First channel
number.

Range
From the list, choose a voltage range. The input range applies
to all channels.

Sample time
Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

25-23

Diamond MM-32-AT Frame Analog Input (A/D)

Purpose
Library

Note

25-24

MM-32-AT Frame Analog Input block
xPC Target Library for Diamond

The Diamond-MM-32-AT Frame Analog Input block is a frame-based
one. A frame consists of a fixed number of samples (defined by the
Number of scans per frame parameter) for each of a specified set of
channels. A scan is a group of samples, one for each channel.

Normally, the system timer controls an xPC Target model at intervals
specified by the block Sample Time parameter. In contrast, the
Diamond-MM-32-AT Frame Analog Input block executes the model in
which it occurs each time it converts a new frame of data. You control
this rate with the parameter values Interval between scans and
Number of scans per frame:

Rate = (Interval between scans) x (Number of scans per frame)

You control the frame size with the parameter values Number of
channels and Number of scans per frame:

frameSize = (Number of channels) x (Number of scans per frame)

After the block assembles a frame of data, it generates an interrupt,
which triggers the next iteration of the model.

Note, after you add this block to a model and are ready to configure the
model, edit the xPC Target code generation options.

1 From the model, select Simulation > Configuration Parameters.
2 Select the Real-Time Workshop node.

3 In the Target selection section, from the System target file list,
browse to and select xpctarget.tlc.

4 In the xPC Target options node, from the I/O board generating
the interrupt list, select the value Diamond-MM-32. This specifies
that the Diamond-MM-32-AT board generates the interrupt.

Diamond MM-32-AT Frame Analog Input (A/D)

Scaling
Input to
Output

Block
Parameters

5 In the same node, from the Real-time interrupt source list, select
the IRQ number you have jumpered on the board.

6 In the same node, for the PCI slot (-1: autosearch) or ISA
base address parameter, enter the same ISA address as for the
Diamond-MM-32-AT Frame block Base address parameter.

7 Click OK and save the model.

Note To enable the interrupt for the frame-based block, the

16-bit bus jumper must be present in the board J7 jumper

block. For further details, see the section labeled "16-Bit Bus" in

the Diamond-MM-32-AT user’s guide documentation
(http://www.diamondsystems.com/files/binaries/DMM32v2.64.pdf).

Hardware Input Block Output Data Type Scaling
Volts Double 1

Channel configuration
From the list, select the following. Refer to the
Diamond-MM-32-AT documentation for a description of the
configuration modes.

® 1-32 Single-Ended to select the configuration mode labeled A
(32 single-ended input channels)

e 1-16 Differential to select the configuration mode labeled B
(16 differential input channels)

® 1-8 and 7-24 Single-Ended; 9-16 Differential to select
the configuration mode labeled D (eight single-ended input
channels labeled 1 through 8, eight differential input channels
labeled 9 through 16, and an additional eight single-ended
input channels labeled 17 through 24).

25-25

http://www.diamondsystems.com/files/binaries/DMM32v2.64.pdf

Diamond MM-32-AT Frame Analog Input (A/D)

25-26

Note that the selected channel configuration must match the
configuration set by the jumpers in block J5. This driver does
not support mode C.

Output Signal Type

From the list, select either Vector or Frame:

® Vector — Select Vector if you expect the output signal from
this block to be the input signal for an xPC Target scope or
some other block that requires vector input.

¢ Frame — Select Frame if you expect the output signal from this
block to be the input signal for a block that requires a frame.
For example, a Signal Processing block.

Range

From the list, select a voltage range. The input range applies
to all channels.

First channel number

Enter the number of the first channel in a set of contiguous
channels. Depending on the value of the Channel Configuration
parameter, the first channel number must be within the range 1
through 32, 1 through 16, or 1 through 24.

Number the channels starting from 1 even if Diamond Systems
numbers them starting from 0.

Number of channels

Enter the number of input channels you want to use. The
maximum number of channels varies between 1 and 32 and
depends on Channel configuration and the First channel
number. Note that hardware limitations require that either the
Number of channels or Number of scans per frame value be
even. If your application requires that both quantities be odd, add
1 to one of them and ignore the resulting additional data.

Diamond MM-32-AT Frame Analog Input (A/D)

Number of scans per frame
Enter the number of scans per frame. For a value of N, each
output port of the block will have a signal width of N and contain
N samples of the corresponding channel. Note that hardware
limitations require that either the Number of channels or
Number of scans per frame value be even. If your application
requires that both quantities be odd, add 1 to one of them and
ignore the resulting additional data.

Interval between conversions within a scan
From the list, select the interval, in microseconds, between
conversions within a scan.

Interval between scans
Enter the interval, in seconds, between successive scans.

Base address
Enter the base address of the board. This entry must correspond

to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

25-27

Diamond MM-32-AT Analog Output (D/A)

Purpose
Library
Scaling

Input to
Output

Block
Parameters

25-28

MM-32-AT Analog Output block

xPC Target Library for Diamond

Hardware Output Block Input Data Type Scaling
Volts Double 1

Channel vector
Enter numbers between 1 and 4. This driver allows the selection
of individual D/A channels in any order. The number of elements
defines the number of D/A channels you use. For example, to use
the first and second analog output (D/A) channels, enter

[1,2]

Number the channels beginning with 1 even if the board
manufacturer starts numbering the channels with 0.

Range
From the list, choose a range code. This driver does not allow a
different range for each of the four channels. This selection must
correspond to the range and bipolar/unipolar jumper settings on
the board.

The following table is a list of the ranges for this driver and the
corresponding range codes. The D/A specific jumpers on the board
must be in the correct positions for the ranges entered.

Input Range (V) Range Code
-10 to +10 -10

-5 to +5 -5

0 to +10 10

0 to +5 5

Diamond MM-32-AT Analog Output (D/A)

For example, if the first and second channel range is 0 to +10
volts, enter

[10,10]

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is

used for all channels. If you specify a value of 1, the corresponding

channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector
The initial value vector contains the initial voltage values for
the output channels. Enter a scalar or a vector that is the same
length as the channel vector. If you specify a scalar value, that
value is the initial value for all channels. The channels are set to
the initial values between the time the model is downloaded and
the time it is started.

Sample time

Enter the base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

25-29

Diamond MM-32-AT Digital Input

Purpose
Library

Note

Scaling
Input to
Output

Block
Parameters

25-30

MM-32-AT Digital Input block
xPC Target Library for Diamond

The Diamond-MM-32-AT has one 8255 chip with three ports (A,B,C).
Each port has a maximum of 8 digital I/O lines that can be configured
as inputs or outputs.

Use a separate driver block for each port. By selecting the digital input
driver block, you configure the port as input.

Block Output Data

Hardware Input Type Scaling
TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 8 to select the digital input lines
used with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines
the number of digital lines used.

For example, to use all the digital inputs for one port, enter
[1 ’2’3,4,5!657,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Port
From the list choose A, B, or C. The I/O board has an 8255 chip
with three ports. The Port parameter defines which port of the
8255 chip is used for this driver block. Each port has a maximum
of eight digital lines that you can configure as inputs or outputs
depending on which driver block is chosen. In each case, one block
is needed for each port.

Diamond MM-32-AT Digital Input

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

25-31

Diamond MM-32-AT Digital Output

Purpose
Library

Note

Scaling
Input to
Output

Block
Parameters

25-32

MM-32-AT Digital Output block
xPC Target Library for Diamond

The Diamond-MM-32-AT has one 8255 chip with three ports (A,B,C).
Each port has a maximum of eight digital I/O lines that you can
configure as inputs or outputs.

Use a separate driver block for each port. By selecting the digital output
driver block, you can configure the port as output.

Block Input Data
Hardware Output Type Scaling

TTL Double < 0.5 =TTL low
> 0.5 =TTL high

Channel vector
Enter numbers between 1 and 8 to select the digital output lines
used with this port. This driver allows the selection of individual
digital output lines in any order. The number of elements defines
the number of digital lines used.

For example, to use all the digital outputs for one port, enter
[1 ’2’3,4,5!657,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Port
From the list choose either A, B, or C. The I/O board has an 8255
chip with three ports. The Port parameter defines which port
of the 8255 chip is used for this driver block. Each port has a
maximum or eight digital lines that can be configured as inputs or
outputs depending on which driver block is chosen. In each case,
one block is needed for each port.

Diamond MM-32-AT Digital Output

Reset vector
The reset vector controls the behavior of the channel at model
termination. Enter a scalar or a vector that is the same length as
the channel vector. If you specify a scalar value, that setting is
used for all channels. If you specify a value of 1, the corresponding
channel is reset to the value specified in the initial value vector.
If you specify a value of 0, the channel remains at the last value
attained while the model was running.

Initial value vector
The initial value vector contains the initial values (0 or 1) of the
output channels. Enter a scalar or a vector that is the same length
as the channel vector. If you enter a scalar, that value is used for
all channels. The channels are set to these initial values between
the time the model is downloaded and the time it is started.

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond
to the DIP switch settings on the board. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

25-33

Diamond Garnet-MM

Board

General
Description

Board
Characteristics

25-34

Diamond Garnet-MM

The Garnet-MM is an I/O board with 24 or 48 high current digital I/O
lines that can be configured in groups of eight for either digital input
or digital output. There are two versions of this board, 24 (GMM-24)
or 48 (GMM-48) digital I/O lines. The 48 line version has two 82C55
chips. Each chip has three 8-bit I/O ports for a total of 48 lines. The 24
line version has one 82C55 chip with three 8-bit I/O ports for a total
of 24 lines.

The xPC Target block library supports this board with these driver
blocks:

¢ Diamond Garnet-MM Digital Input

¢ Diamond Garnet-MM Digital Output

Board name Garnet-MM

Manufacturer Diamond Systems Corporation
Bus type PC/104

Access method I/0 mapped

Multiple block instance support DIO: Yes
Multiple board support Yes

Diamond Garnet-MM Digital Input

Purpose
Library

Note

Scaling
Input to
Output

Block
Parameters

Garnet-MM Digital Input block
xPC Target Library for Diamond

Each chip port of the Garnet-MM board can be configured independently
for either input or output. Use a separate driver block for each port.
Select the digital output driver block for a given port to configure the
port for output.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 8 to select the digital input lines
used with this port. This driver allows the selection of individual
digital input lines in any order. The number of elements defines
the number of digital lines used.

For example, to use all the digital inputs for the current port, enter

(1,2,3,4,5,6,7,8]

Number the lines beginning with 1 even if the board manufacturer
starts numbering the lines with 0.

Port
From the list choose A, B, or C.

Chip
From the list choose 1 or 2. Note, only select 1 for the 24 line
version of the Garnet-MM board. Selecting 2 for the 24 line board

has no effect. You can select either 1 or 2 for the 48 line version of
the board.

25-35

Diamond Garnet-MM Digital Input

Sample time
Enter a base sample time or a multiple of the base sample time.

Base address
Enter the base address of the board. This entry must correspond

to the base address board setting. For example, if the base
address 1s 300 (hexadecimal), enter

0x300

25-36

Diamond Garnet-MM Digital Output

Purpose

Library

Scaling
Input to
Output

Block
Parameters

Garnet-MM Digital Output block

xPC Target Library for Diamond

Each chip port of the Garnet-MM board can be configured independently
for either input or output. Use a separate driver block for each port.
Select the digital input driver block for a given port to configure the
port for input.

Hardware Input Block Output Data Type Scaling

TTL Double TTL low = 0.0
TTL high = 1.0

Channel vector
Enter numbers between 1 and 8 to select the digital output lines
used with this port. T